

TDL Reference Manual

The information contained in this document represents the current view of Tally Solutions Pvt. Ltd., (‘Tally’ in
short) on the topics discussed as of the date of publication. Because Tally must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Tally, and Tally cannot guarantee the
accuracy of any information presented after the date of publication.

This document is for informational purposes only. TALLY MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in, or introduced into a retrieval system, or
transmitted in any form, by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Tally Solutions Pvt. Ltd.

Tally may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this document. Except as expressly provided in any written licence agreement from Tally, the
furnishing of this document does not give you any licence to these patents, trademarks, copyrights, or other
intellectual property.

© 2009 Tally Solutions Pvt. Ltd. All rights reserved.

Tally, Tally 9, Tally9, Tally.ERP, Tally.ERP 9, Shoper, Shoper 9, Shoper POS, Shoper HO, Shoper 9 POS, Shoper 9
HO, TallyDevel¬oper, Tally Developer, Tally.Developer 9, Tally.NET, Tally Development Environment, Tally
Extender, Tally Integrator, Tally Inte¬grated Network, Tally Service Partner, TallyAcademy & Power of Simplicity
are either registered trademarks or trademarks of Tally Solutions Pvt. Ltd. in India and/or other countries. All other
trademarks are properties of their respective owners.

Version: TDL Reference Manual/1.0/August 2009

Preface

Tally Definition Language (TDL) is the development of Tally.ERP 9. This allows the programmers to
develop and deploy faster, effective Tally Extensions with ease.

The book, TDL Reference Manual, divided into two sections. First section begins with the
Introduction to TDL and focuses on basic concepts of TDL ie TDL Components, Symbols used in
TDL, Dimensions and Formatting, Usage of Variables, Buttons and Keys.

Thereafter the emphasis is on the coverage of core concepts of Objects, Methods and Collections,
Actions and UDF creation. After gaining a reasonable amount of depth and confidence in
understanding the above, the focus of the book progresses towards the application of all covered
topics ie., the creation of various types of Reports, Printing and Voucher/Invoice customisations.

Second section devoted to a detailed discussion of TDL language enhancements for Tally.ERP 9.
This section describes the new features, Writing Remote Compliant TDL Reports and User Defined
Functions respectively. The What’s new section gives an insight about the enhancements in the
Tally.ERP 9 Release 1.5.

This book is for anyone who wants to explore TDL as a development language of Tally and how to
write TDL programs effectively. Absolutely no previous TDL experience is necessary. Even
advanced users will find this book useful, as the changes to TDL are dealt from the developers and
the user's point of view.

You will enjoy reading this book, as it is rich in concepts.

Happy programming folks!

Contents

Contents

Section I. TDL – The Development Language of Tally.ERP 9

1. Tally Definition Language – An Introduction .. 3
1.1 Tally Definition Language ... 4

1.1.1 Comparison with other Languages.. 4
1.2 The TDL Program - At a Glance .. 6
1.3 TDL Capabilities .. 7
1.4 TDL – Features ... 7

2. TDL Components ... 9
2.1 Writing a Basic TDL Program ... 9

2.1.1 Specification of TDL Files .. 9
2.2 TDL Interfaces .. 11
2.3 Hello TDL Program ... 11

2.3.1 Executing Multiple Files using Include Definition .. 13
2.4 TDL Components .. 14

2.4.1 Definitions .. 14
2.4.2 Attributes .. 17
2.4.3 Modifiers .. 22
2.4.4 Actions in TDL ... 26
2.4.5 Data Types ... 26
2.4.6 Operators in TDL .. 27
2.4.7 Special Symbols ... 29
2.4.8 Functions ... 29

3. Symbols and Prefixes .. 31
3.1 Access Specifiers/Symbol Prefixes ... 32
3.2 General Symbols ... 32
3.3 The Usage of @ and @@ ... 32

3.3.1 Formula ... 32
3.4 The Usage of # and ## .. 34

3.4.1 Referencing a Field using # ... 34
3.4.2 Modifying existing Definitions using # .. 34
3.4.3 Accessing value from a Variable using ## .. 35

3.5 The Usage of $ and $$.. 35
3.5.1 Accessing a Method using $.. 35
3.5.2 Calling an Internal Function using $$.. 35

3.6 Commenting a Code using ;, ;; and /**/ .. 36
3.7 Line Continuation Character (+) ... 36
3.8 Exposing Methods and Creating Procedures (_)... 37
3.9 Reinitialize Definitions (*) ... 37
 i

Contents

3.10 Optional Definitions (!) .. 37

4. Dimensions and Formatting ... 41
4.1 Unit of Measurement .. 41
4.2 Dimensional Attributes .. 42

4.2.1 Sizing/Size Attributes ... 42
4.2.2 Spacing/Position Attributes ... 44

4.3 Alignment Attributes ... 45
4.3.1 Top Parts, Bottom Parts, Left Parts and Right Parts .. 45
4.3.2 Top Lines and Bottom Lines .. 47
4.3.3 Left Field and Right Field .. 47
4.3.4 Align ... 48

4.4 Some Specific Attributes ... 49
4.4.1 Inactive .. 49
4.4.2 Invisible .. 49
4.4.3 Widespaced .. 50

4.5 Definitions and Attributes for Formatting ... 50
4.5.1 Border .. 50
4.5.2 Style.. 52
4.5.3 Color .. 53
4.5.4 Background and Print BG Attribute .. 54
4.5.5 Format Attribute .. 55

5. Variables, Buttons and Keys ... 57
5.1 Attributes of a Variable .. 57

5.1.1 Type .. 57
5.1.2 Default ... 58
5.1.3 Persistent ... 58
5.1.4 Volatile ... 59
5.1.5 Repeat .. 59

5.2 The Scope of a Variable ... 60
5.2.1 Local .. 60
5.2.2 Global .. 60
5.2.3 Field Acting as a Variable ... 61

5.3 Modifying the Variable Value .. 62
5.4 Example - Variables ... 62
5.5 Buttons and Keys .. 63

5.5.1 Attributes of Buttons/ Keys .. 63

6. Objects and Collections ... 65
6.1 Objects .. 65

6.1.1 Tally Object Structure .. 66
6.1.2 Tally Objects Types .. 68
6.1.3 Object Context ... 71
 ii

Contents

6.2 Collections .. 72
6.2.1 Simple and Compound Collections .. 73
6.2.2 Sources of Collection ... 74
6.2.3 Creating a Collection .. 75

6.3 Object Association .. 77
6.3.1 Report Level Object association .. 78
6.3.2 Part Level Object Association ... 78
6.3.3 Line Level Object Association ... 80
6.3.4 Field Level Object Association .. 81

6.4 Methods .. 81
6.4.1 Internal Methods .. 82
6.4.2 User Defined/External Methods .. 82
6.4.3 Accessing Method .. 82

6.5 Collection Capabilities ... 85
6.5.1 Basic Capabilities .. 85
6.5.2 Advanced Capabilities ... 94

7. Actions in TDL .. 99
7.1 Categories of Action ... 99
7.2 Action Association .. 100

7.2.1 Action Association at Menu Definition .. 100
7.2.2 Action Association at Button/Key Definition ... 101
7.2.3 Action Association at Field Definition .. 102

7.3 Components of Actions ... 102
7.4 Global Actions .. 103

7.4.1 Action — Menu .. 103
7.4.2 Action – Create and Alter .. 105
7.4.3 Action — Modify Object .. 108
7.4.4 Action – Browse URL .. 110

7.5 Actions — Create Collection, Display Collection and Alter Collection .. 110
7.5.1 Action — Create Collection ... 110
7.5.2 Action – Display Collection ... 111
7.5.3 Action – Alter Collection ... 111
7.5.4 Collection Attributes .. 112

7.6 Object Specific Actions ... 113
7.6.1 Menu Actions – Menu Up, Menu Down, Menu Reject .. 113
7.6.2 Form Actions – Form Accept, Form Reject, Form End .. 114
7.6.3 Part Actions – Part Home, Part End, Part Pg Up ... 114
7.6.4 Line Actions – Explode, Display Object, Alter Object .. 115
7.6.5 Field Actions – Field Copy, Field Paste, Field Erase, Calculator .. 116

8. User Defined Fields ... 119
8.1 What is UDF? ... 119

8.1.1 Creating a UDF ... 119
 iii

Contents

8.1.2 To store the User Input in the UDF ... 120
8.1.3 To retrieve the value of UDF from an Object .. 120

8.2 Classification of UDF’s ... 121
8.2.1 Simple UDF ... 121
8.2.2 Aggregate UDF ... 123

9. Reports, Printing and Validation Controls ... 127
9.1 Reports ... 127

9.1.1 Tabular Reports ... 127
9.1.2 Hierarchical Report (Drill down Report) .. 133
9.1.3 Column Based Reports .. 136
9.1.4 Auto-Column Reports .. 140
9.1.5 Automatic Auto-Column Reports ... 146
9.1.6 Columnar Report ... 148

9.2 Printing ... 148
9.2.1 Printing Techniques ... 149
9.2.2 Page Breaks ... 150
9.2.3 Frequently Used Attributes and Functions .. 153
9.2.4 Validation and Controls .. 155

10. Voucher and Invoice Customisation .. 161
10.1 Classification of Vouchers ... 161

10.1.1 Accounting Vouchers ... 161
10.1.2 Inventory Vouchers .. 162
10.1.3 Accounting-cum-Inventory Vouchers .. 162

10.2 The Structure of a Voucher Object ... 162
10.3 Customisation ... 164

10.3.1 Voucher Customisation .. 164
10.3.2 Invoice Customisation ... 173

Section II. TDL – Language Enhancements

1. General and Collection Enhancements ... 185
1.1 Attributes and Modifier Enhancements .. 185

1.1.1 New Attributes ... 185
1.1.2 Behavioral Changes of Attributes .. 188
1.1.3 The Attribute – Child Of to support Voucher Type .. 189
1.1.4 Attribute Modifiers ... 190
1.1.5 Behavioral Changes for Attribute Modifiers ... 191
1.1.6 Partial Attribute Support ... 193

1.2 Enhanced Special Symbols ... 193
1.2.1 Multi – line commenting in TDL source code using /* and */ ... 193
1.2.2 Extension of modifying definitions using # .. 194
 iv

Contents

1.2.3 ‘*’ (Reinitialize) Definition modifier ... 194
1.3 Method Formula Syntax with Relative Object Specification ... 194
1.4 Enhancements – Object Association .. 196

1.4.1 Report Level Object Association ... 196
1.4.2 Part Level Object Association ... 197
1.4.3 Line Level Object Association ... 198
1.4.4 Field Level Object Association .. 199

1.5 Enhancements – Object Access via Interface Object ... 199
1.5.1 Identifying Part and Line Interface object with ‘Access Name’ .. 199
1.5.2 Value Extraction .. 200

1.6 Bracket support in TDL .. 201
1.6.1 During the Function Call ... 202
1.6.2 In the language syntax for nesting formulas .. 203

1.7 Action Enhancements ... 203
1.7.1 Enhancements in Key Actions .. 204
1.7.2 New Actions ... 205

1.8 Events introduced ... 211
1.8.1 Event – On Form Accept .. 211
1.8.2 Event – On Focus ... 211

1.9 User Defined Function ... 212
1.10 New Functions .. 212

1.10.1 $$IsObjectBelongsTo... 212
1.10.2 $$NumLinesInScope .. 213

1.11 Enhanced Collection Capabilities .. 213
1.11.1 Aggregation and Reporting ... 213
1.11.2 The Summary Collection is available through Tally ODBC Interface .. 222
1.11.3 HTTP XML Collection (GET and POST with and without Object Specification) 222
1.11.4 Usage As Tables .. 229
1.11.5 Dynamic Object support for HTTP–XML Information Interchange ... 233
1.11.6 Collection Capabilities for Remoting .. 234

2. Remote Compliant TDL Reports ... 235
2.1 Client/Server Architecture – An Overview ... 236
2.2 Tally Client/Server Architecture using Tally.NET ... 236

2.2.1 Tally.NET Server ... 237
2.2.2 Tally.ERP 9 Server .. 237
2.2.3 Tally.ERP 9 Client ... 238

2.3 Setting up Server Tally for Remote Access ... 238
2.4 Setting up the Client Tally .. 241
2.5 TDL – In a Client/Server Environment .. 243
2.6 TDL Enhancements for Remote .. 244

2.6.1 Collection Enhancements .. 244
2.6.2 Report Level Enhancements .. 247
2.6.3 Function on Request .. 250
 v

Contents

2.6.4 Action Enhancements ... 252
2.7 Writing Remote Compliant TDL Reports ... 253

2.7.1 Fetching the single Object ... 253
2.7.2 Repeating Lines over a Collection ... 254
2.7.3 Using the same Collection in more than one Report ... 256

3. User Defined Functions .. 257
3.1 Functions – In General .. 257
3.2 Functions – In TDL .. 258
3.3 Function – Building Blocks .. 258

3.3.1 Definition Block ... 259
3.3.2 Procedural Block .. 261

3.4 Programming Constructs-In Function ... 262
3.4.1 Conditional Constructs .. 262
3.4.2 Looping Constructs .. 265
3.4.3 Control Constructs ... 268

3.5 Calling a Function ... 271
3.5.1 Using Action – CALL ... 271
3.5.2 Using – Symbol Prefix $$... 271

3.6 Function Execution – Object Context .. 272
3.6.1 Target Object Context .. 272
3.6.2 Parameter Evaluation Context .. 272
3.6.3 Return Value Evaluation .. 273

3.7 Valid Statements inside a Function .. 273
3.7.1 Actions for Variable Manipulation .. 273
3.7.2 Action Enhancements and New Actions ... 275
3.7.3 Actions – For Object and Context Manipulation .. 279

4. What’s new in Tally.ERP 9 Release 1.5 .. 285
4.1 Collection Enhancements ... 285

4.1.1 Source Var ... 286
4.1.2 Compute Var .. 286
4.1.3 Filter Var ... 286
4.1.4 Sequence of Evaluation of Collection Attributes ... 287
4.1.5 Usage of the collection attributes Compute Var, Source Var, Filter Var ... 287

4.2 List Variables Introduced ... 289
4.2.1 List Variable .. 289
4.2.2 List Variable Manipulation .. 290
4.2.3 Functions Used with List Variables ... 294
4.2.4 Constructs introduced in functions for List Var .. 295

4.3 Dynamic Actions .. 296
4.4 New Functions .. 297

4.4.1 Function – $$TgtObject ... 297
4.4.2 Function – $$ContextKeyword .. 300
 vi

Contents

4.5 New Attribute – Trigger Ex ... 300
4.6 New Actions .. 302

4.6.1 Log Object ... 302
4.6.2 Log Target ... 302

4.7 Tally Command Line Parameters .. 303
4.8 Enhancements in Previous Release .. 306

4.8.1 Behavioral change in System Definitions .. 306
4.8.2 Action Browse URL is Enhanced ... 307
4.8.3 Collection Enhancements .. 307
4.8.4 New Function – $$DateRange ... 308
4.8.5 Action – SET VALUE ... 308
4.8.6 TDL Issues Resolved .. 308
 vii

Section I
 TDL – The Development Language of

Tally.ERP 9

Tally Definition Language – An Introduction
Introduction
Tally Solutions has been in the business of providing complete business solutions for over 20
years to MSME (Micro, Small and Medium Enterprise) and to a large extent for LE (Large Enter-
prise) businesses. With over 3 million users in over 100 countries Tally, the flagship product
continues to be the preferred IT solution for a majority of businesses every year.

Tally – the flagship product (which started as a simple bookkeeping system, 20 years ago), is
today a comprehensive, integrated solution – covering several business aspects of an enterprise.
These include Accounting, Finance Management, Receivables/Payables, Inventory Accounting,
Inventory Management, BoM based manufacturing inventory, multi-location/multi-currency\multi-
unit handling, Budgets and Controls, Cost and Profit Centres, Job Costing, POS, Group Company
consolidations, Statutory Taxes (Excise, VAT, CST, TDS, TCS, FBT, etc), Payroll Accounting, and
other major and minor capabilities. It has served as an ERP for small enterprises over the past 12
years.

With the introduction of Remote Access, Remote Authentication, Support Centre, Central Admin-
istration and Account Management inherently supported in the product it can be formally labeled
as Tally.ERP 9. With this capability, it is possible that the owner or an authorized user will be able
to access all the reports and information from a remote location. With each forthcoming release
subsequent to Tally.ERP 9 Release 3, additional capabilities will be delivered to cater to large
business enterprises. The major functional areas in Tally are:

Order to Payment (Purchase Processes)
Simple (Cash Purchase) to Advanced Purchase Processes - including Ordering, Receipting,
Rejections, Discounts, etc.

Order to Receipt (Sales Processes)
Simple (Cash Sales) to Advanced Sales Processes - including Orders Received, Delivery, Invoic-
ing, Rejections and Receipting, POS Invoicing at Retail.

Material to Material (Manufacturing Processes)
Simple to Multi-step material transformations, Discrete and Process Industry cycles, Work in
progress and valuations.
 3

TDL Reference Manual
Payroll
Simple to Complex Payrolls – including working with different Units of Measures (e.g. Job rates).
Statutory compliances, their specifications and usage.

MIS
A complete set of reports for Business requirements are as follows:
Financial, Inventory, MIS & Analysis. Budgeting & Controls with advanced classification and
filtering techniques. Group Companies and multiple consolidation views. Cross-Period Reporting,
Forex handling, Bank Reconciliation. There is also an Export option to port data into other applica-
tions (e.g. Spreadsheets) for additional manipulation.

Statutory Compliance
The Compliance Requirements and related configurations in Tally.ERP 9 are as follows with
regard to the implementation of :

Direct Taxes: TDS/TCS, FBT
Indirect Taxes: Excise, Service Tax, VAT, CST

Enabling Environment for Remote - Tally.NET
Tally.NET is overall responsible for the Remote Access Services. It allows:

Remote Access - It is now possible for an authenticated user to access Tally.ERP 9 from
any computer system.
Tax Audit Tools - The CA community will now be able to deliver affordable services to cli-
ents addressing their Security and Privacy concerns.

1. Tally Definition Language
Tally Definition Language is the application development language of Tally. TDL is developed to
provide the user with flexibility and power to extend the default capabilities of Tally and integrate
them with the external applications. TDL provides a development platform for the user. The entire
User Interface of Tally.ERP 9 is built using TDL. TDL as a language, provides capabilities for
Rapid Development, Rendering, Data Management and Integration.

TDL is an Action driven language based on definitions. It emphasizes strongly on the concept of
reusability. It comprises of Interface and Data objects. Interface Objects mainly determines the
behavior of the product in terms of user experience. Data objects are mainly used for data persist-
ence in the Tally Database.

Any user of Tally.ERP 9 can learn TDL and develop extensions for the product. The entire source
code of the product is available as part of the Tally Development Environment i.e. with our product
Tally Developer.

1.1 Comparison with other Languages
Today there are many languages in the world which are used to develop applications.These
languages are developed keeping some specific areas of application in mind. Some languages
4

TDL Reference Manual

are good for developing front end applications while others may be good for writing system
programs. The various categories of languages available today are as follows:

Low Level Languages
Low level Languages are languages that can interact directly with the hardware. They comprise
instructions which are either directly given in computer-understandable digital code or in a pseudo
code. These languages require very sound knowledge in hardware. For e.g. Assembly language
or any native machine language.

Middle Level Languages
Middle Level Languages consists of syntax, rules and features just like high level languages.
However they can implement low level languages as part of the code. For e.g., C, C++, etc.

High Level Languages
High level languages are very much like the English language. They are easy to learn, program
and debug. High level programming languages are sometimes divided into two categories: Third
Generation and Fourth Generation languages.

Third Generation Languages
Most High Level languages fall in the category of Third Generation Languages. Third Generation
languages are procedural languages i.e. the programmer specifies the sequence of the execution
and the computer strictly follows it. The execution starts from the first line of the code to the last
line, taking care of all the control statements and loops used in the program.

Fourth Generation Languages
There is no clear cut definition for the Fourth Generation Languages (4GL). Normally the 4GL are
high level languages which require significantly fewer instructions to accomplish a task. Thus a
programmer is able to quickly develop and deploy the code. Most 4GL are non procedural lan-
guages.

Eg: Some 4GL are used to retrieve, store and modify data in the database using a single line
instruction whereas 4GL use report generators to generate complex reports. It is sufficient to
specify headings and totals using the language and the report is generated automatically. Certain
4GL can be used to specify the screen design which will automatically be created.

On having understood the categorization of computer languages, TDL can be categorised as a
Fourth Generation High Level Language. The capabilities which TDL provides to the users is
much more than what other 4GL languages provide. This may extend to meeting specific
purposes like database management, report generation, screen design etc. TDL is a comprehen-
sive 4GL language which gives tremendous power in the hands of the programmer by providing
data management, complex report generation and screen design capabilities using only a few
lines of code, leading to rapid development. Let us now analyze the features in detail which help
us in understanding and appreciating the capabilities provided by the development language of
Tally i.e. ‘TDL - Tally Definition Language’.
 5

TDL Reference Manual
2. The TDL Program - At a Glance
Before we discuss the capabilities and features of TDL in detail, let us have a look at the basic
TDL program. The following figure describes all the components in a TDL Program. The descrip-
tion, usage and detailed explanation of each component will be taken up in the subsequent
chapters.

 Figure 1.1 TDL Components
6

TDL Reference Manual

3. TDL Capabilities
Rapid Development
TDL is a language based on definitions. It is possible to reuse the existing definitions and deploy
them. This is a language meant for rapid development. It is possible to develop complex reports
within minutes. The user can extend the default functionalities of the product by writing a code
consisting of a few lines.

Multiple Output Capability
The same language can be used to send the output to multiple output devices and formats.
Whenever an output is generated, it can be displayed on the screen, printed, transferred to a file
in particular format and finally mailed or transferred to a webpage using Http protocol. All this is
made possible just by writing a single line of code. Just imagine the technology used to develop
the platform that such a complex task is developed and implemented using only a few lines.

Data Management Capability
As we have discussed earlier, the data is stored and retrieved as objects. There are a few internal
objects predefined by the platform. Using TDL, it is possible to create and manipulate information
on these with ease. Suppose, an additional field is required by the user to store information as a
part of the predefined object, then that capability is also provided, i.e. by using TDL the user can
create a new field and store a value into it which can be persisted in the Tally.ERP 9 database.

Integration Capability
To meet the challenges of the business environment it becomes absolutely mandatory to share
information seamlessly across applications. Integration becomes a crucial factor in avoiding the
duplication of data entry. The Tally.ERP 9 platform has a built in capability of integrating data with
other applications.The following are the different types of integrations possible in Tally.ERP 9.

Tally.ERP 9 to Tally.ERP 9 using Sync
Tally.ERP 9 to external applications in various data formats
External DB to Tally.ERP 9 using XML and SDF formats
Tally.ERP 9 DB to external applications using ODBC
External DB to Tally.ERP 9 using ODBC

4. TDL – Features
Definition Language
A definition language provides the users with ‘Definitions’ that can be used to specify the task to
be performed. The user can specify the task to be performed, but has no control over the
sequence of events that occur while performing the specified task. The sequence of events is
implicit to the language and cannot be changed by the user. TDL works on Named Definitions,
which means, that every definition should have a name and that it should be unique. TDL has
User Interface Objects like Reports, Forms, Parts, Lines and Fields as definitions.

TDL can define Reports, Menus, Forms, and so on, but the Definitions will not have any relevance
unless they are used. Definitions are deployed by use, not by existence.
 7

TDL Reference Manual
TDL is based on concepts pertaining to Object Oriented Programming. This language has been
created for reusability. Once a definition is created, it can be reused any number of times. Besides
the reusing capability, the user can also add new features along with the existing definitions.

Tally.ERP 9 has a singular view of all the TDL Definitions, which means the Tally.ERP 9
executable reads TDL (user defined and default) as one program. On invoking Tally.ERP 9, all the
default TDL files of TDLServer.DLL will be loaded. The user TDLs will be subsequently loaded as
specified in Tally.ini.

Non Procedural Language
Most of our programming experience has been in dealing with a procedural language where we
define a sequence of actions to define the sequence of events that take place. The entire control
is with the programmer. The programmer is able to determine the start and end-point of the
program. The programmer cannot control the sequence. All the sequences are implicit in the
program. The programmer cannot write his/her own procedure. The platform provides a set of
functions for the TDL programmer.

Action Driven Language
The programmer can only control as to what happens when a particular event takes place. While
interaction, the user can select any sequence of action. Based on his/her action a particular code
gets executed.

Rich Language
TDL is a rich language, that refers to a list of functions, attributes, actions etc. which are provided
by the platform. It is possible to develop a complex report or modify the existing one within no
time. Imagine how many lines of code would be required if a simple button were to be added
using a traditional programming language.

Flexibility and Speed
The architecture of the software and the language provide extraordinary flexibility and speed.
Speed in this regard refers to the speed of deployment. With Tally.ERP 9 the deployment is
extremely rapid.

Tally.ERP 9 is flexible enough to change its functionality based on the customer’s business
requirements. Most of the time customer specific requirements may seem like a majority of func-
tional changes that have to be done but they may only be minor variations of the existing function-
ality which can be done within no time.

Learning Outcome
The major functional areas of Tally.ERP 9 are Purchase processes, Sales processes,
Manufacturing processes, Payroll, MIS, Statutory Compliance and Tally.NET.
TDL is the application development environment of Tally.ERP 9.
TDL is a Fourth Generation High Level Language.
TDL is not only a definition language but also a non-procedural action driven language.
8

TDL Components
Introduction
As we have already discussed in the previous lesson, TDL is a language based on definitions. It is
an action driven language i.e. whenever the user performs an action a particular segment of code
gets executed. In this lesson we will provide an overview and basic functionality of each
component involved in a TDL program.

1. Writing a Basic TDL Program
TDL allows us to define tasks in standard English statements. This simplifies the process of defini-
tion, allowing even a person without any programming language background to work on TDL. The
TDL statements required to perform a particular task can be created in a file using IDE provided
by Tally.ERP 9 such as Tally Developer. Such a file is called TDL file. Let us begin our discussion
by writing the basic TDL program.

The Steps to create a TDL Program
Open any ASCII text editor such as notepad or use the IDE Tally Developer provided by
Tally.ERP 9 .
Create a new file.
Type TDL statements in the file.
Save the file with a meaningful name an extension as applicable to the editor. The editor
can save the file with an extension ‘.txt’, ‘.tdl’ .
The file can be compiled into a file with an extension .tcp (Tally Compliant Product). It is
possible to compile the file for a particular Tally serial number.
It is possible to run all files ie (.txt,.tdl and .tcp) in Tally.ERP 9.

1.1 Specification of TDL Files
There are two ways of implementing the TDL code:

Specifying TDL files in Tally.ini (Configuration Settings File)
Specifying TDL file through Tally.ERP 9 application configuration screen

Specifying TDL files in Tally.ini
The path of the TDL program has to be included in the Tally.ini file, using a parameter called ‘TDL’.
If the parameter ‘User TDL’ is set to No, Tally.ERP 9 will not read any TDL parameters specified in
Tally.ini file.
 9

TDL Reference Manual
Syntax

User TDL = Yes

TDL = <Path\filename> with extension

 Example
User TDL = Yes

TDL = C:\Tally.ERP 9\MyReport.tcp

 or

TDL = C:\Tally.ERP 9\MyReport.txt

When Tally.ERP 9 starts, it looks for a file named ‘MyReport.tcp’ or ‘MyReport.txt’ in the directory
C:\Tally.ERP 9. On loading the default TDL files into memory, Tally.ERP 9 reads and loads every
TDL file mentioned in Tally.ini into memory before displaying the first Menu, ‘Gateway of Tally’.

Specifying TDL file through Tally.ERP 9 application configuration screen
Alternatively, the TDL file name can be specified in the configuration screen displayed by
selecting menu item ‘TDL Configuration’ from the F12 Configuration menu. In this screen click the
button Local TDLs or press F4, set the value Yes for ‘Load TDLs on Start up’ and specify the
<Path\filename> with extension in ‘List of TDLs to preload on Tally Startup’ field.
Following figure shows the TDL configuration screen:

 Figure 2.1

 Figure 2.2 Specification of TDL files
10

TDL Reference Manual

To load a Default Company in Tally.ERP 9, the ‘Load’ parameter used is as stated below:

Example
Default Companies = yes

Load = 00002

Here 00002 is the company folder that resides in Tally.ERP 9\Data. The data path can be
specified with the parameter Data.

Example
Data = C:\Tally.ERP 9\Data

2. TDL Interfaces
We have already seen that TDL is a language based on definitions. When we start Tally.ERP 9
the Interfaces which are visible on the screen are Menu, Report, Button and Table. In TDL specific
definitions are provided to create the same.
A Report and Menu can exist independently. A Menu is created by adding items to it while a
Report is created using Form, Part, Line and Field. These are the definitions which cannot exist
without a Report. TDL operates through the concept of an action which is to be performed and
Definition on which the action is performed. The Report is invoked based on the action.

TDL program to create a Report contains the definition Report, Form, Part, Line and Field and an
action to execute the Report. A Report can have more than one Form, Part, Line and Field defini-
tions but at least one has to be there. The hierarchy of these definitions is as follows:

Report uses a Form
Form uses a Part
Part uses a Line
Line uses a Field
A Field is where the contents are displayed or entered

The Report is called either from a Menu or from a Key event.

3. Hello TDL Program
The Hello TDL program demonstrates the basic structure of the TDL. The Report is executed
from the existing Menu ‘Gateway of Tally’.

Restart Tally.ERP 9 whenever there are changes made in the TDL program, so that
they can be implemented.
 11

TDL Reference Manual
To invoke a new Report displaying the text “Welcome to the world of TDL” from the main Menu
‘Gateway Of Tally’.

[#Menu : Gateway of Tally]

Item : First TDL : Display : First TDL Report

[Report : First TDL Report]

Form : First TDL Form

[Form : First TDL Form]

Parts : First TDL Part

[Part : First TDL Part]

Lines : First TDL Line

[Line : First TDL Line]

Fields : First TDL Field

[Field : First TDL Field]

Set as : "Welcome to the world of TDL"

The TDL code adds a new Menu Item ‘First TDL’ in the ‘Gateway Of Tally’ menu. When the Menu
Item is selected the report, First TDL Report is displayed. The report is in display mode as the
action ‘Display’ is specified while adding the menu item ‘First TDL’. The user input is not accepted
in this report. The text ‘Welcome to the world of TDL’ is displayed in the Report since it contains
only one field.
Figure 2.2 shows the output of the code mentioned above :
12

TDL Reference Manual

 Figure 2.3 Output of Welocme to the world of TDL program

3.1 Executing Multiple Files using Include Definition
Since TDL can span or exist across files, the definition ‘INCLUDE’ provides the convenience of
modularizing the application and specifying all of them in one TDL file. It allows the user to include
TDL code existing in separate file/files to be included into the current file. ‘Include’ as the name
suggests, gives you the ability to include another TDL file into a file, instead of declaring it in
Tally.ini separately.

Syntax

[Include : <path/filename>]

In case the TDL file is in the same directory, give either the filename or give the complete path for
the file.

Example
Let us assume we are using two files, sample1.txt and sample2.txt. To run both the files, we have
to include sample2.txt in sample1.txt.

[Include: sample2.txt]
 13

TDL Reference Manual
4. TDL Components
The TDL consists of Definitions, Attributes, Modifiers, Data Types, Operators, Symbols and
Prefixes, and Functions. Let us now analyze the components of the language.

4.1 Definitions
Tally Definition Language (TDL) is a non-procedural programming language based on definitions.
TDL works on named definitions. The biggest advantage of working with TDL is its reusability of
definitions. All the definitions are reusable by themselves and can be a part of other definitions.
Whenever a change in code needs to be reflected in a program, Tally.ERP 9 must be restarted.

Syntax

 [<Definition Type> : <Definition Name>]

All definitions start with an open square bracket and end with a closed bracket.

<Definition type> It is the name of predefined definition types available in the platform, e.g. Col-
lection, Menu, Report, Form, Part, Line etc.

<Definition Name> This refers to any user defined name which the user provides to instantiate
the definition i.e. whenever a definition is created, a new object of a particular definition type
comes into existence.

Example
[Part : PartOne]

In the example mentioned above, the type of definition is Part and the name of definition is
PartOne.

4.1.1 Types of Definition
 The various definitions in TDL are categorized as follows:

Interface Definitions – Menu, Report, Form, Part, Line, Fields, Button, Table
Data Definitions – Object, Variable, Collection
Formatting Definitions – Border, Style, Color
Integration Definitions – Import Object, Import File
Action Definitions – Key
System Definitions

Interface Definitions
Definitions which are used in creating a user interface are referred to as an interface definition.
The definitions in this category are Menu, Report, Form, Part, Line, Fields, Button and Table.
14

TDL Reference Manual

Menu: A Menu displays a list of options. The Tally.ERP 9 application determines the action to be
performed on the basis of the Menu Item selected by the user. The ‘Gateway of Tally’ is an
example of a ‘Menu’. A Menu can activate another Menu or Report.

Report: This is the fundamental definition of TDL. Every screen which appears in Tally.ERP 9 i.e.
the input screen or output screen is created using the report definition. A Report consists of one
or more Forms.

Form: A Form consists of one or more Parts.

Part: Part consists of one or more Lines.

Line: A Line consists of one or more Fields.

Field: A field is place where the data is actually displayed or entered. The data can be a constant
or variable data.

Button: The user can perform an action in three ways i.e. by selecting a menu item, by pressing a
key and by clicking on a button. The Button definition allows the user to display a button on the
Button bar and execute an action.

Table: The Table definition displays a list of values as Tables. Data from any collection can be
displayed as a Table.

Data Definitions
Definitions which are used for storing the data are referred to as a Data Definitions. The defini-
tions in this category are Object, Variable and Collection.

Object: An object is the definition which consists of a data and the associated / related functions,
commonly called as methods that manipulate the data. TDL is made up of User interface and Info
Objects. Info Objects can be External (user defined) or Internal (platform defined). External or
user defined objects are not persistent in the Tally database. It is not possible to create an Internal
Object Definition in TDL i.e. they are predefined by the platform . It is possible to perform modifi-
cations on it. An object can also further contain an object/objects. A Ledger/Group is an example
of an internal object.

Collection: A Collection is a group of objects. Collections can be made up of internal or external
objects. These can be based on multiple collections also. We can create a collection by aggregat-
ing the collections at a lower level in the hierarchy of objects.

Variables: Variables are used to control the behavior of reports and its contents. The variables
can assume different values during the execution and based on those values the application
behaves accordingly. The option Plain Paper/Pre-Printed while printing the invoice is an example
of a variable controlling the report
 15

TDL Reference Manual
Formatting Definitions
Definitions which are used in formatting a user interface are referred as Formatting Definition. The
definition in this category are Border, Style and Color.

Style: The Style definition determines the appearance of the text to be displayed by using a font
scheme. The Font name, Font style and Font size can be changed/defined using the style defini-
tion. In default TDL the pre-defined Style definitions are Normal Bold, Normal Italic and Normal
Bold Italic.

Border: This introduces a single/double line as per user specifications. Thin Box, Thin Line,
Common Border are all examples of pre defined borders.

Color: The Color definition is used to define a color. A name can be given to an RGB value of
color. Once a name is assigned to an RGB color value, it can be expressed as an attribute. In TDL
the only color names that can be specified are Crystal Blue and Canary Yellow.

4.1.2 Integration Definitions
Definitions which makes the import of data available in SDF (Standard Data Format) are referred
to as Integration Definitions. Import Object and Import File are the two definitions classified in this
category.

Import Object: This identifies the type of information that is being imported into Tally.ERP 9. The
importable objects can be of the type groups, ledgers, cost centre, stock items, stock groups,
vouchers etc.

Import File: The Import file allows the user to describe the structure of each record in the ASCII
file that is being imported. The field width is specified as an attribute of this definition.

4.1.3 Action Definitions
The action definition allows the user to define a action when a key combination is pressed. It also
associates an object on which the action is performed. The Key definition falls in this category.

Key: The Key Definition is used to associate an action with the key combination. The action is
performed when the associated key combination is pressed.

4.1.4 System Definitions
System Definitions are viewed as being created by the administrator profile. Any items defined
under System Definitions are available globally across the application. System Definitions can be
defined any number of times in TDL. The items defined are appended to the existing list. System
Definitions cannot be modified.
E.g. of System Definitions are System: Variable, System : Formula, System : UDF and System :
TDL Names
16

TDL Reference Manual

4.2 Attributes
Each definition has properties referred to as ‘Attributes’. There is a predefined set of attributes
provided by the platform for each definition type. The attribute specifies the behavior of a defini-
tion. Attributes differ from Definition to Definition. A Definition can have multiple attributes associ-
ated with it. Each attribute has a 'Name'(predefined) and an assigned value (provided by the
programmer). A value can be either directly be associated to a given attribute or through symbols
and prefixes. Apart from a direct value association of the attribute, there are ways to associate
alternate values based on certain conditions prevailing at runtime.

Syntax

[<Definition Type> : <Definition Name>]

<Attribute Name> : <Attribute Value>

<Attribute Name> It is name of the attribute, specific for the definition type.
<Attribute Value> This can be a constant or a formula.

Example
[Part: PartOne]

Line : PartOne

4.2.1 Classification of Attributes
The classification of an attribute is done on the basis of the number of values it accepts and if they
can be specified multiple times under the definition i.e. based on the number of sub attributes and
the number of values.There are seven types of attributes.
Single and Single List
A Single type attribute accepts only one value and can’t be specified multiple times. The
attributes Set As, Width, Style etc are all of a single type.

Example
[Field : Fld 1]

Set As : “Hello”

Set As : “TDL”

In the field the string “TDL” is displayed as Set As as a Single type attribute. The value of the last
specified attribute will be displayed.

A Single List type attribute accepts one value which can be specified multiple times. These
attributes also accepts a comma separated list.
 17

TDL Reference Manual
Example
[Line : Line 1]

Field : Fld 1, Fld 2

Field : Fld 3

The line Line 1 will have three fields Fld 1, Fld 2 and Fld 3.

Dual and Dual List
Dual type attributes accept two values and can’t be specified multiple times. The attributes
Repeat is an example of a Dual type.

Example
Repeat : Line 1 : Collection 1

Dual List type attributes accept two values and can be specified multiple times.

Example
Set : Var 1 : “Hello”

Set : Var 2 : “TDL”

Triple and Triple List
Triple type attributes accept three values.

Example
Object : Ledger Entries : First : $LedgerName = “Tally”

Triple List type attributes accepts three vales and can be specified multiple times.

Example
Aggr Method : TrPurcQty : Sum : $BilledQty

Aggr Method : TrSaleQty : Sum : $BilledQty

The Attribute type Menu item
The attribute type Menu Item allows the user to add a menu item in the given Menu definition.

Example
[#Menu: Gateway Of Tally]

Item : Sales Analysis : Display : Sales Analysis

Item : Purchase Analysis : P : Display : Purchase Analysis
18

TDL Reference Manual

In the example mentioned above, the options Sales Analysis & Purchase Analysis are added to
the Gateway of Tally Menu. For a Purchase Analysis, the character ‘P’ is explicitly specified as a
hot key.

Attributes of Interface Definitions
Frequently used attributes of interface definitions like Report, Form, Part, Line and Field are
explained in this section.

Report Definition Attributes
Form
Every report requires one or more Forms. If you have more than one form, then the first form is
displayed by default. When you are in print mode, all the forms will be printed one after the other.
Syntax

Form : <Form Name>

Example:
[Report : HW Report]

Form : HW Form

This code defines the report ‘HW Report’, using the form HW Form.

If you choose a Report that has no Forms defined, Tally.ERP9 assumes that the Form Name is
the same as the Report Name and looks for it. If it exists, Tally.ERP9 displays it. Otherwise,
Tally.ERP9 displays an error message ‘Form :<Report Name> does not exist’.

Title
The Title attribute is used to give a meaningful title to the Report.

Syntax

Title : <String or Formula>

By default, Tally.ERP 9 displays the name of the Report as Title, when it is invoked from the menu.
If the title attribute is specified, then it overrides the default title.

Example:
[Report : HWReport]

Form : HWForm

Title : “Hello World”

Here, “Hello World” is displayed as the title of the Report, instead of HWReport.
 19

TDL Reference Manual
Form Definition Attributes
Part / Parts
The attribute Part defines Parts in a Form. Part and Parts are synonyms of the same attribute.
This attribute specifies the alignment of the Parts in a Form. By default, the Parts are aligned ver-
tically.
Syntax

Part / Parts : <List of Part Names>

Example
[Form : HW Form]

Part : HW Title Partition, HW Body Partition

This part of the code defines two parts, HW Title Partition and HW Body Partition which are verti-
cally aligned, starting from the top of the Form.

Part Definition Attributes
Line / Lines
This attribute determines the Lines of a Part.
Syntax

Line / Lines : <list of line names>

Example
[Part : HW Part]

Line : HW Line1, HW Line2

Line Definition Attributes
Field / Fields
The attribute, Field and Fields are similar. They start from the left of the screen or page in the
order in which they are specified.
Syntax

Field / Fields : <List of Field Names>

Example
[Line : HW Line]

Fields : HW Field

Set as
This attribute sets a value to the Field.
20

TDL Reference Manual

Syntax

Set as : <Text or Formula>

Example
[Field : HW Field]

Set as :”Hello TDL”

Here, the text “Hello TDL” is displayed in the report.

Info
This attribute is used typically to set text for prompts and titles as display strings. Even when used
in Create/ Alter mode, this attribute does not allow the cursor to be placed on the current field as
against the Attribute Set as. However, in display mode the Attributes Set as and Info function sim-
ilarly.

Syntax

Info : <Text or formula>

Further, if both the attributes (Set as and Info) are specified, then the value set with the attribute
Set as overrides the value set with the attribute Info.

Skip
This attribute causes the cursor to skip the particular field and hence, the value in the field cannot
be altered by the user, even if the report is in Create or Alter mode.

Syntax

Skip : <Logical Formula>

Example
[Field : HW Field]

Type : String

Set as : “Hello World“

Skip : Yes

This code snippet sets the value in the ‘HW Field’ as ‘Hello World’ and forces the cursor to skip
the field.

The above code snippet can also be rewritten as:
[Field : HW Field]

Type : String

Info : “Hello World“
 21

TDL Reference Manual
The attribute Info at Field combines both Skip and Set As.

4.3 Modifiers
Modifiers are used to perform a specific action on definition or attribute. They are classified as
Definition Modifiers and Attribute Modifiers. Definition Modifiers are #, ! and *. Attribute Modifiers
are Use, Add, Delete, Replace/Change, Option, Switch and Local. They are classified into two:

Static/Load time modifiers : Use, Add, Delete, Replace/Change
Dynamic/Real time modifiers : Option, Switch and Local

4.3.1 Static/Load time Modifiers
These modifiers do not require any condition at the run time. The value is evaluated at the load
time only and remains static throughout the execution. Use, Add, Delete, Replace are static mod-
ifiers.

Use
The USE Keyword is used in a definition to reuse an existing Definition.

Syntax

Use : <Definition Name>

Example
[Field : DSPExplodePrompt]

Use : Medium Prompt

All the properties of the existing field definition Medium Prompt are applicable to the field DSPEx-
plodePrompt.

Add
The ADD modifier is used in a definition to add an attribute to the Definition.

Syntax

Add :<Attribute Name>[:<Attribute Position>:<Attribute Name>]

:<Attribute Value>
22

TDL Reference Manual

<Attribute Name> This is the name of the attribute specific to the definition type
<Attribute Position> It can be any one of the keywords Before, After, At Beginning and At End.
By default the position is At End.
<Attribute Value> This can either be a constant or a formula.

Example
 [#Form : Cost Centre Summary]

Add : Button : ChangeItem

A new button ChangeItem is added to the form Cost Centre Summary.

Example
[#Part : VCH Narration]

Add : Line : Before : VCH NarrPrompt : VCH ChequeName, VCH AcPayee

The lines VCH ChequeName, VCH AcPayee are added before the line VCH NarrPrompt in the
part VCH Narration.

Delete
The Delete modifier is used in a definition to delete an attribute of the Definition.

Syntax

Delete :<Attribute Name>[:<Attribute Value>]

<Attribute Value> This is optional and can either be a constant or a formula. If the attribute value
is omitted, all the values of the attribute are removed.

Example
[Form: Cost Centre Summary]

Use : DSP Template

Delete : Button : ChangeItem

The button ChangeItem is deleted from the form Cost Centre Summary. The functionality of the
button ChangeItem is no longer available in the form Cost Centre Summary.
If the Button name is not specified, then all the buttons will be deleted from the Form.

Replace
The Replace modifier is used in a definition to alter an attribute of the Definition.

Syntax

Replace : <Attribute Name> :<Old Attribute Value>: <New Attribute Value>
 23

TDL Reference Manual
<Attribute Name> This is the name of the attribute specific for the definition type.
< Old Attribute Value > and <New Attribute Value> can either be a constant or a formula.

Example
[Form: Cost Centre Summary]

Use : DSP Template

Replace: Part : Part1: Part2

The part Part1 of form Cost Centre Summary is replaced by the Part2. Now only the Part2 proper-
ties are applicable.

4.3.2 Dynamic/Real time modifiers
Dynamic modifiers get evaluated at the run time based on a condition. These modifiers are run
every time the TDL is executed in an instance of Tally. Option, Switch and Local are the Dynamic
modifiers.

Local
The Local attribute is used in the context of the definition to set the local value within the scope of
that definition only.
Syntax:

Local : <Definition Name> :<Old Attribute Value>

: <New Attribute Value>

Example
 Local : Field : Name Field : Set As : #StockItemName

The value of the formula #StockItemName is now the new value for the attribute Set As of the field
Name Field applicable only for this instance. Elsewhere the value will be as set in the field defini-
tion.

Option
Option is an attribute which can be used by various definitions, to provide a conditional result in a
program. The ‘Option’ attribute can be used in the ‘Menu’, ‘Form’, ‘Part’, ‘Line’, ‘Key’, ‘Field’,
‘Import File’ and ‘Import Object’ definitions.
Syntax

Option : <Optional definition>: <Logical Condition >

If the ‘Logical’ value is set to ‘True’, then the ‘Optional definition’ becomes a part of the original
definition and the attributes of the original definition are modified based on this definition.
<Modified Definition> This is the name of a definition defined as optional definition using the def-
inition modifier !.
24

TDL Reference Manual

Example
[Field : FldMain]

Option : FldFirst : cond1

Option : FldSecond: cond2

The field FldFirst is activated when the cond1 is true. The field FldSecond is activated when the
cond2 is true. Optional definitions are created with the symbol prefix "!" as follows:

[!Field : FldFirst]

[!Field : FldSecond]

Switch - Case
The Switch - Case attribute is similar to the Option attribute but reduces code complexity and
improves the performance of the TDL Program.
The Option attribute compulsorily evaluates all the conditions for all the options provided in the
description code and applies only those which satisfy the evaluation conditions.
The attribute Switch can be used in scenarios where evaluation is carried out only till the first
condition is satisfied.
Apart from this, the Switch can be grouped using a label. Therefore, multiple switch groups can be
created and zero or one of the switch cases could be applied from each such group.

Syntax

Switch: Label: Desc name : Condition

Example
[Field: Sample Switch]

 Set as : "Default Value"

 Switch : Case1: Sample Switch1: ##SampleSwitch1

 Switch : Case1: Sample Switch2: ##SampleSwitch2

 Switch : Case1: Sample Switch3: ##SampleSwitch3

 Switch : Case2: Sample Switch4: ##SampleSwitch4

4.3.3 Sequence of Evaluation – Attributes
The order of evaluation of the attributes is as specified below:

1. Use
2. Normal Attributes
3. Add/Delete/Replace
4. Option
5. Switch
6. Local
 25

TDL Reference Manual
4.3.4 Delayed Attributes
Add/Delete/Replace are referred to as Delayed attributes because even if they are specified
within the definition in the beginning, their evaluation will be delayed till the end, within the static
modifier and normal attributes.

4.4 Actions in TDL
TDL is an action driven language. Actions are activators of specific functions with a definite result.
Actions are performed on two principal definition types, ‘Report’ and ‘Menu’. An action is always
associated with an originator, requestor and an object. All the actions originate from the Menu,
Key and Button. An action is evaluated in the context of the Requestor and Object.
Typically, actions are initiated through the selection of a Menu item or through an assignment to a
Key or a Button. Examples of Actions are: Display, Menu, Print, Create, Alter etc.

Syntax

Action : <Action Name> [: <Definition/Variable Name> : Formula]

<Action Name > It is the name of the action to be performed. It can be any of the pre-defined
actions.
<Definition/Variable Name> It is the name of the definition/variable on which the specified action
is to be performed.

Example
Action : Create : My Sample Report

4.5 Data Types
The Data Types in TDL specify the type of data stored in the field. TDL being the business
language, supports business data types like amount, quantity, rate apart from the other basic
types. The data types are classified as Simple Data Type and Compund Data Type.

Simple Data Type
This holds only one type of data. These data types cannot be further divided into sub-types.
String, Number, Date and Logical data types fall in this category.

Compound Data Type
This is a combination of more than one data type. The data types that form a compound data type
are referred to as sub-data type. The Compound Data types in TDL are: Amount, Quantity, Rate,
Rate of exchange and Aggregate.
26

TDL Reference Manual

Table 2:1 shows the Sub-Types under a particular Data Type.

TABLE 2.1 Data Types and its Sub- Data Types

The type for the field definition is specified using the Type attribute.

Syntax

[Field: <Field Name>]

Type : <Data type> : <Sub-type>

Example
[Field : Qty Secondary Field]

Type : Quantity : Secondary Units

4.6 Operators in TDL
Operators are special symbols or keywords that perform specific operations on one, two or three
operands and then return a result.
The three types of operators in TDL are as follows:

Data Types Sub - Types
Simple Data Types

Number
String
Date
Logical

Compound Data Types
Amount Base / Direct Base

Forex
Rate Of Exchange
DrCr

Quantity Number
Primary Units/ Base Units
Secondary Unit/ Alternate Units/ Tail Units

Rate Price
Unit Symbol

Rate of Exchange
 27

TDL Reference Manual
4.6.1 Arithmetic Operators
The arithmetic operators supported by TDL are as shown in Table 2:2:

TABLE 2.2 Arithmetic Operators

4.6.2 Logical Operators
The logical operators used are: OR, AND ,NOT , TRUE/ON/YES and FALSE/OFF/NO

TABLE 2.3 Logical Operators
4.6.3 Comparison Operators
A Comparison Operator compares its operands and returns a logical value based on whether the
comparison is True. The Comparison Operator returns the value as True or False. TDL supports
the following Comparison Operators:

TABLE 2.4 Comparison Operators

+ Addition
- Subtraction
/ Division
* Multiplication

OR Returns True if either of the expression is true.
AND Returns True when both the expressions are True
NOT Returns True if the expression value is False and

False when expression value is True
TRUE/ON/YES Can be used to check if the value of the expression

is True.
FALSE/OFF/NO Can be used to check if the value of the expression

is False.

= /Equal/ Equals Checks if the values of both the expressions are
equal.

</LessThan/Lesser Than
/ Lesser

Checks if the value of the <expression 1> is less
than the value of <expression 2>.

> / Greater Than/ More Checks if the value of the <expression 1> is
greater than the value of <expression 2>.

In Checks if the value is in the List of comma sepa-
rated values.

Null Checks whether the expression is Empty.
Between …. And Checks if the expression value is in the range
28

TDL Reference Manual

4.6.4 String Operators

The operator = is a comparison operator, not an assignment operator. There is no
assignment operator in TDL. While evaluating the expression some keywords are
ignored. The keywords which are not considered are Than, With, By, To, Is, Does, Of.

String operators facilitate the comparison of two strings. The following are the String operators:

TABLE 2.5 String Operators

4.7 Special Symbols
The Symbol Prefix in Tally Definition Language (TDL) has different usage and behavior when
used with different definitions and attributes of definitions.

Special Symbols used in TDL are $, $$, @, @@, #, ##, ;, ;;, ;;;, /* */, + , ! , * and _ . Each of
these symbols are used for a specific purpose. The usage of each of these symbols will be
discussed in detail in the subsequent chapters.

4.8 Functions
A function is a small code which accepts a certain number of parameters performs a task and
returns the result. The function may accept zero or more arguments but returns a value.

The functions in TDL are defined and provided by the platform. These functions are meant to be
used by the TDL programmer and are specifically designed to cater to the business requirement
of the Tally.ERP 9 application.

TDL has a library of functions which allows performing string, date, number and amount related
operations apart from the business specific tasks. Some of the basic functions provided by TDL
are $$StringLength, $$Date, $$RoundUp, $$AsAmount. TDL directly supports a variety of
business related functions such as $$GetPriceFromLevel, $$BillExists, $$ForexValue.

Syntax

$$<Function Name>: <Argument List>

Contains/ Containing Checks if the expression contains the given string
Starting With / Begin-
ning With/ Starting

Checks if the expression starts with the given string

Ending With / Ending Checks if the expression ends with the given string
Like Checks if the expression matches with the given

string pattern
 29

TDL Reference Manual
Example
 $$SysName:EndOfList

The function returns True if the parameter passed is a TDL reserved string.

Learning Outcome
In a TDL program, the Report and Menu definitions can exist independently.
The hierarchy of definitions in a TDL program are as follows:
 Report uses a Form
 Form uses a Part
 Part uses a Line
 Line uses a Field and
 A Field is where the contents are displayed or entered.

The Report is called either from a Menu or from a Key Event.
TDL consists of Definitions, Attributes, Modifiers, Data Types, Operators, Symbols and
Prefixes, and Functions.
30

Symbols and Prefixes
Introduction
In the previous lesson, we have discussed the various TDL Components like definitions,
attributes, functions, symbol prefixes, variables etc.
In TDL, there are a few symbols which are used for a specific purposes. Some symbols are used
as access specifiers i.e. mainly used to access value of a method, variable, field, formula etc.
Some are used for a general purpose such as modifiers. Figure 3.1, Let us refer to the table below
to understand the categorization of the various symbols and their usage at a glance.

 Figure 3.1 Symbol Categorization
 31

TDL Reference Manual
1. Access Specifiers/Symbol Prefixes

TABLE 3.1 Access Specifiers

2. General Symbols

TABLE 3.2 General Symbols

3. The Usage of @ and @@
3.1 Formula
In TDL, large complex calculations can be broken down to smaller simple calculations or expres-
sions expressed as a Formula. The values computed using these formulae can be accessed
using the symbol prefixes @ and @@.

3.1.1 Naming Conventions for Formula
Case insensitive
Only alphanumeric characters are allowed
Space insensitive at Definition time. However, during deployment or usage of the same,
spaces are not allowed

3.1.2 Classifications of formulae
Local Formula
Global Formula

Symbols Usage
@ Used to access Local formula.
@@ Used to get the value of a System formula
When prefixed to Field name gives the value of the field
Used to get the value of a global variable
$ Used to access the value of an Object Method
$$ Used to call the Function

Symbols Usage
; ;; ;;; /* */ Used for adding comments in TDL
+ Used as line continuation character
 _ (underscore) Used to expose methods to ODBC and for creating

SQL Procedure
* Used to Reinitialize a Definition
! Used to create an Optional Definition
Used as a definition modifier
32

TDL Reference Manual

3.1.3 Local Formula
A Local Formula is one which can be defined and retrieved at any Interface Definition. The scope
of the local formula is only within the current definition. A local formula is usually defined if the
formula is specific to a definition and not required by any other definition. The value of a Local
Formula can be accessed using the Symbol Prefix @.

Example
[Field: CompanyNameandAddress]

Set as: “Tally India Pvt Ltd, No 23 & 24, AMR Tech Park II, Hongasandra,+

 Bangalore”

The above could be written, using the Local Formula as:

[Field : CompanyNameandAddress]

Company : “Tally India Pvt Ltd, ”

Address : “No 23 & 24, AMR Tech Park II, Hongasandra, ”

City : “Bangalore”

Set as : @Company + @Address + @City

3.1.4 Global Formula
A Global Formula, is one which when defined once, is available globally. In other words, the
Global Formula value can be accessed by all the Definitions. A Global formula is defined when a
formula is required at many locations. The value of a Global Formula can be accessed using the
Symbol Prefix @@. A Global Formula can also be referred to as a System Formula. All the Global
Formulae must be defined within the [System: Formula] Definition Section.

Example
[System: Formula]

AmtWidth : 20

[Field: RepTitleAmt]

Width : @@AmtWidth

[Field: RepDetailAmt]

Width : @@AmtWidth

[Field: RepTotalAmt]

Width : @@AmtWidth
 33

TDL Reference Manual
In the example mentioned above, all the Fields assume the same width. If the width of the fields
need to be altered, a change is made only at the [System: Formula] Section. This change will be
applied to all the Fields using the Global Formula AmtWidth.

4. The Usage of # and ##
In TDL, the Symbol Prefix # can be used for:

Referencing a field using #
Modifying the existing definitions using #

4.1 Referencing a Field using #
The Symbol Prefix # is used to retrieve the value from another Field.

Example
[Field: HW]

Set as : “Hello World”

[Field: HW1]

Set as : #HW

In the example mentioned above, the value within the Field HW is being set to the Field HW1. In
other words, the contents of the Field HW i.e., The Field HW1 is set to “Hello World” by using
#HW.

4.2 Modifying existing Definitions using #
The Symbol Prefix # is also used to modify existing definitions. One can alter the attributes of the
definition. For e.g., adding a new Field within a Line definition.

Example
[#Menu: Gateway of Tally]

Add : Key Item: Hello World: H : Display: HWReport

Title : “Tally Gateway”

[#Field: LedParticulars]

Width : 50

In the example mentioned above, the existing Menu Gateway of Tally (default Menu) has been
altered to add the Item ‘Hello World’ and the Title of the Menu is changed to Tally Gateway. The
existing Field LedParticulars have also been altered to set its width attribute to the value of 50.
34

TDL Reference Manual

4.3 Accessing value from a Variable using ##
As the name suggests, a Variable is a named container of data which can be altered as and when
required. In TDL, Variables can be classified as Local and Global Variables. Local variables retain
their value only within a particular Report. Global variables on the other hand, retain their values
throughout the session or permanently, based on the Variable Definition. We will learn more about
Variables later.

The value of a Variable can be accessed using symbol prefix ##. Both Local and Global Variables
can be retrieved using ##. Local variable is being checked for first. In cases where the Local
Variable is not found, it assumes the Global Variable value.
Example

[Field : FGField]

Set as: ##RTitle

[Report : DBLedReport]

Title : if ##LedgerName = “ ” then “Daybook” else “Ledger Report”

5. The Usage of $ and $$
5.1 Accessing a Method using $
Any information from an Object can be extracted by using a Method or UDF. The $ Prefix is used
to invoke or deploy the value from a Method or UDF of any Object, where the term Method and
Object are TDL specific. This will be covered in greater depth in the sections to follow.

Context Fall Through for $
Check if it is an internal method or UDF within the current object
User Defined Method
System Formula
Change context to parent object and repeat the above steps

Example
[Field : My Field]

 Set as : $Name

The previous code snippet displays the value of the method Name of the associated object.

5.2 Calling an Internal Function using $$
In TDL, functions are inbuilt and TDL Programmers can make use of the same. A function can
accept zero or more arguments to perform a specific task on the arguments and return a value.
While passing arguments to functions, spaces and special characters except bracket () are not
 35

TDL Reference Manual
allowed. If the function parameter requires an expression, it can be enclosed within bracket () so
as to return the result of the expression as a parameter to the Function.

Example
[Field : Current Date]

Set as : $$MachineDate

[Field : Credit Amt]

Set as : if $$IsDr:$ClosingBalance then 0 else $ClosingBalance

[Field : StringPart Field]

Set as : $$StringPart($Email:Company:##SVCurrentCompany):0:5

6. Commenting a Code using ;, ;; and /**/
Commenting increases readability. In TDL, Comments can be given using symbol prefixes viz. ;,
;; and /* */. Symbol Prefix ; is used for Part line commenting, ;; is used for Single Line Comment-
ing and /* */ is used for Multi Line Commenting. All the lines enclosed within /* and */ will be
ignored by the TDL Interpreter as a comment.

A Single Semi-Colon (;) is allowed as a comment for single line commenting but as a standard
coding practice, it is recommended to use Double Semi-Colon (;;).

Example
/*
This code explains the usage of Multi-Line Commenting
as well as Single Line Commenting.
*/
;; Altering Menu Gateway of Tally

[#Menu : Gateway of Tally]

Add : Key Item : Comment : C : Display : Comment

;; Menu Item alteration ends here

7. Line Continuation Character (+)
A Line Continuation Character (+) is used to split a lengthy line into number of shorter lines. By
doing this, the programmer can see the entire line without scrolling to the left or right. This can
also help in understanding and debugging the code faster.

Example
/*
This code explains the mechanism of breaking a line into Multiple Lines using +
36

TDL Reference Manual

*/
;; Altering Menu Gateway of Tally

[#Menu: Gateway of Tally]

Add : Key Item : Before : @@locQuit : +

LineCtn : C : Display : LineCtn : +

NOT $$IsEmpty : $$SelectedCmps

8. Exposing Methods and Creating Procedures (_)
The Symbol Prefix (_) is used to expose Methods to ODBC. By prefixing _ to a Collection Name,
it turns into a procedure which can be referenced externally by passing the parameter as a
Variable.
Example
;; Exposing Methods within the Objects to ODBC

[#Object : Ledger]

_Difference : $ClosingBalance - $OpeningBalance

;; Creating Procedures to be referenced externally

[Collection: _LedBills]

Type : Bills

Child of : #UName

SQLParms : UName

SQLValues : Bill No : $Name

SQLValues : Bill Date : $$String:$BillDate:UniversalDate

9. Reinitialize Definitions (*)
This is similar to operators such as ‘#’ (Modify) and ‘!’ (Option). When * is used for an existing def-
inition; all the attributes of the definition are overridden. This is very useful when there is a need to
completely replace the existing description content with a new code.

Example
[*Field : MyField]

Width : 20% Page

Set as: “This Field has been reinitialized”

10. Optional Definitions (!)
The Symbol Prefix ! is used to define optional definitions. Switch and Option are attributes which
can be used by various definitions like Menu, Form, Part, Line, Field, Collection, Button, Key,
Import File and Import Object to provide a conditional result in TDL. However, they cannot be
 37

TDL Reference Manual
used with Report, Color, Style, Variable, System Formula, System Variable, System UDF, Border
and Object definitions.

The attributes of the original definition are overridden by the attributes of the optional definition
only if the Logical Condition is satisfied. In other words, if the Logical Condition returns True, the
attributes of the optional definition become a part of the original definition else it is ignored,
leaving the original definition intact.

Syntax

Option : <Optional Definition> : <Logical Condition>

Switch : Label : <Optional Definition> : <Logical Condition>

The difference between Switch and Option is that Switch statements bearing the same label are
executed till a satisfying condition is found. On the other hand, option executes all the Option
statements matching the given conditions sequentially. Switch statements bearing different labels
are similar to Option statements as all the Switch statements will be executed for the given condi-
tions.

Example - Option
[Line: MFTBDetails]

Fields : MFTBName

Right Fields: MFTBDrAmt, MFTBCrAmt

Option : MFTBDtlsClsgG1000 : $ClosingBalance > 1000

Option : MFTBDtlsClsgL1000 : $ClosingBalance < 1000

[!Line: MFTBDtlsClsgG1000]

Local : Field : MFTBDrAmt : Style : Normal Bold

Local : Field : MFTBCrAmt : Style : Normal Bold

[!Line: MFTBDtlsClsgL1000]

Local : Field : MFTBDrAmt : Style : Normal

Local : Field : MFTBCrAmt : Style : Normal

In the above code snippet, the condition specified in both the options, will be checked and it will
execute the option satisfying the given condition. In this case, there is a possibility that more than
one condition might satisfy and get executed.

Example - Switch
[Line: MFTBDetails]

Fields : MFTBName

Right Fields: MFTBDrAmt, MFTBCrAmt
38

TDL Reference Manual

Switch : Case 1: MFTBDtlsClsgG1000 : $ClosingBalance > 1000

Switch : Case 1: MFTBDtlsClsgL1000 : $ClosingBalance < 1000

[!Line: MFTBDtlsClsgG1000]

Local : Field : MFTBDrAmt : Style : Normal Bold

Local : Field : MFTBCrAmt : Style : Normal Bold

[!Line: MFTBDtlsClsgL1000]

Local : Field : MFTBDrAmt : Style : Normal

Local : Field : MFTBCrAmt : Style : Normal

In the previous code snippet, the condition specified in the switch statements, will be checked one
after another. The first statement satisfying the given condition will be executed and all other
statements grouped within this label, ‘Case 1’ will not be executed further unlike Option. The
similar behavior of Option can be achieved by specifying different labels, if required.

Learning Outcome
Access Specifiers and General symbols are the two different special symbols used in
TDL.
The Access Specifiers @ and @@ is used for accessing the value of Local and global
formula respectively.
can be used for referencing a field or modifying the existing definition.
is used for accessing the value from a Local or global variable.
$ is used for accessing a method or UDF and $$ is for calling an internal function.
 39

Dimensions and Formatting
Introduction
Dimensions are specifications. Dimensions in TDL are effective either in the display mode or in
the print mode. The data in TDL does not have an absolute position of the dimensions specified
but a relative .

There are four definitions in TDL that attract dimensions. They are:
Form
Part
Line
Field

1. Unit of Measurement
A Unit of Measurement can be any of the following:

Millimeters/ mms
Centimeters/ cms
Inch(es)
Number of Characters/ Number of Lines
% Screen/ Page
Number – Points (where 1 Point = 1/72 Inch)

It is advisable to follow uniform Units of Measurement throughout the Report in order to
avoid confusion.
 41

TDL Reference Manual
2. Dimensional Attributes
Dimensional Attributes can be classified into two i.e., Specific and General Attributes. They are
as shown in Table 4:1:

TABLE 4.1 Dimensional Attributes

2.1 Sizing/Size Attributes
2.1.1 Height and Width
The attribute Height is used to specify the Height required for the Form, in the Part and Line Defi-
nition whereas the attribute Width is used to specify the Width required for the Form, Part and
Field Definition. The Height and Width can be specified in terms of any of the above Units of
Measurement. In the absence of any Unit of Measurement, the Height assumes a certain number
of lines and similarly, the Width assumes number of characters. The entire Height and Width is in
the proportion of the available paper/ screen dimensions.

Syntax

Height : <Measurement Formula>

Width : <Measurement Formula>

2.1.2 Height and Width – Form Definition
The Height and Width when specified in a Form Definition implies that it is the available Height
and Width which can be utilized by all the Parts, Lines and Fields within the Form. If the contents
of the Part and Line exceed the available Height and/or Width, the contents of the Form are
squeezed to accommodate the same within the available Height and Width. In the absence of any
Height and Width specified, the Form Definition assumes the Height and Width required by the
contents of the Form comprising of Parts, Lines and Fields.

Example
Height : 10 inch

Width : 8.50 inch

Definitions Specific Dimensions General Dimensions
Form Height, Width, Space Top, Space

Bottom, Space Left, Space Right
Horizontal Align, Vertical
Align, Full Height, Full
Width

Part Height, Width, Space Top, Space
Bottom, Space Left, Space Right

Horizontal Align

Line Height, Space Top, Space Bottom,
Indent

Full Height

Field Width, Space Left, Space Right, Indent Full Width, Widespaced
42

TDL Reference Manual

2.1.3 Height and Width – Part Definition
Subsequently, Height and Width when specified in a Part Definition implies that it is the available
Height and Width that can be utilized by all its Sub-Parts, Lines and Fields. If the contents of the
Sub-Parts, Lines and Fields exceed the available Height and Width, the contents of the Part are
squeezed to accommodate the same within the available Height and Width.

Example
Height : 10% Page

Width : 60% Page

2.1.4 Height – Line Definition
Similarly, the Height when specified within a Line Definition restricts the contents of the Lines to
the available Line Height. Generally, specifying the Line Height is not required since the contents
of the lines are controlled by the given Part Height.

2.1.5 Width – Field Definition
The Width when specified within a Field Definition limits the contents of the Field within the
defined boundary. If the contents are longer than the available Width, the Field contents are
squeezed to accommodate the same within the defined width.

2.1.6 FullHeight and FullWidth
The Attribute FullHeight can be specified in a Form or a Line Definition and Attribute FullWidth
can be specified in a Form or a Field Definition. FullHeight is used to instruct the Form or a Line
to utilize the required Height while FullWidth is used to instruct the Form or a Field to utilize the
required Width.

Syntax

FullHeight : <Logical Value>

FullWidth : <Logical Value>

Example
FullHeight : No

FullWidth : No

2.1.7 FullHeight and FullWidth – Form Definition
The attribute FullHeight decides whether to allow the form to consume the required Height or not
depending on the logical value set. By default, the value set for this attribute is Yes. If the current
Form uses Bottom Parts or Bottom Lines, then the Height required/ utilized by the Form will be
100% Page/ Screen.

Similarly, the attribute FullWidth decides whether to allow the Form to consume the available Full
Width or not depending on the logical value set. By default, the value set for this attribute is Yes.
 43

TDL Reference Manual
If the current Form uses the Right Parts or Right Lines, then the Width required/ utilized by the
Form will be 100% Page/ Screen.

2.1.8 FullHeight – Line Definition
The attribute FullHeight decides whether the line can consume the required Height or not
depending on the logical value set. By default, the value set to this attribute is Yes.

2.1.9 FullWidth – Field Definition
The attribute FullWidth decides whether the Field can consume the required Width or not
depending on the logical value set. The value set to this attribute by default, is Yes.

2.2 Spacing/Position Attributes
2.2.1 Space Top, Space Bottom, Space Left and Space Right
Attributes Space Top, Space Bottom, Space Left and Space Right are used to specify the spaces
to be kept to the Top, Bottom, Left and Right of the Definition. Space Top and Space Bottom can
be used in a Form, Part and Line Definition. Space Left and Space Right can be used in a Form,
Part and Field Definition. When Space Top, Space Bottom, Space Left and Space Right are used
in a definition, these spaces are included in the Height and Width specified within the definition.

Syntax

Space Top : <Measurement Formula>

Space Bottom : <Measurement Formula>

Space Left : <Measurement Formula>

Space Right : <Measurement Formula>

Example
Space Top : 1.5 inch

Space Bottom : If ($$IsStockJrnl:##SVVoucherType OR +

 $$IsPhysStock:##SVVoucherType) then 0 else 0.25

Space Left : @@DSPCondQtySL + @@DSPCondRateSL + @@DSPCondAmtSL

Space Right : 1

2.2.2 Space Top, Space Bottom, Space Left and Space Right – Form / Part Definition
The attributes Space Top, Space Bottom, Space Left and Space Right are specified in a Form or a
Part Definition, by leaving the appropriate spaces before displaying / printing a Form. These
spaces are included in the Height / Width of the Form Definition.

2.2.3 Space Top and Space Bottom – Line Definition
The attributes Space Top and Space Bottom when specified in a Line Definition, leave the appro-
priate spaces before/ after the Line. These spaces are inclusive within the Height of the specific
44

TDL Reference Manual

Part in which the current Line Definition resides. If the Height of the Part is unable to accommo-
date the same, it compresses the line to fit it within the available Height.

2.2.4 Space Left and Space Right – Field Definition
The attributes Space Left and Space Right when specified in a Field Definition leave the appropri-
ate spaces before/ after the Field. These spaces are inclusive within the Width of the Part and
Field. If the Width of the Part is unable to accommodate the same, it compresses the Fields within
the Parts and Lines to fit it within the available Width.

2.2.5 Indent
An Indent can be specified either in a Line or a Field Definition. It is similar to the Tab Key which
is used to specify a starting point for a Line or a Field.

Syntax

Indent: <Measurement Formula>

Example
Indent: @@IndentByLevel

2.2.6 Indent – Line Definition
This attribute in the Line Definition specifies the space to be left from the Left margin before the
contents of the line begin.

2.2.7 Indent – Field Definition
This attribute in the Field Definition is similar to the Space Left attribute, except that this attribute
indents the field independent of width of the field. Space Left indents the field within the width
available. However, Indent indents the field exclusive of the width. It can either take a formula as a
parameter or you can give the expression itself as a parameter. The formula can decide as to
what extent each instance of the field has to be indented from the initial place. This attribute is
typically used while displaying reports like list of accounts, Trial Balance, etc., where the groups
and ledgers under a particular group are recursively indented inside the group, based on the order
of the groups and ledgers.

3. Alignment Attributes
3.1 Top Parts, Bottom Parts, Left Parts and Right Parts
These attributes are used to place different parts at different positions in a particular Form or Part.
The attributes Top Parts and Bottom Parts can be specified both in Form as well as Part Definition
whereas Attributes Top Parts, Bottom Parts, Left Parts and Right Parts can be specified in a Part
Definition.
 45

TDL Reference Manual
Syntax

Top Parts : <Part1, Part2, ….>

Bottom Parts : <Part1, Part2, ….>

Left Parts : <Part1, Part2, ….> ;; Only for Part Definition

Right Parts : <Part1, Part2, ….> ;; Only for Part Definition

Example
Top Parts : ACLSFixedLed, TDSAutoDetails

Bottom Parts : PJR Sign

Left Parts : EXPINV Declaration

;; Only for Part Definition
Right Parts : STKVCH Address

 ;; Only for Part Definition

3.1.1 Top Parts and Bottom Parts – Form Definition
In cases where the Top Part or Bottom Part is specified within a Form Definition, it occupies the
Top Section or Bottom Section of the Form respectively, keeping in account the Space Top and
Space Bottom of the Form. The attribute Space Bottom impacts the Bottom Parts by moving it
from the bottom in order to leave appropriate spaces. Similarly, Space top impacts the Top Parts
by moving it from the top in order to leave appropriate spaces.

The Bottom Parts/ Bottom Lines start printing from bottom to the top of the Form. If Height is
specified at the Form Definition, then the Bottom Parts/ Lines start printing from the bottommost
line within the specified Height.

3.1.2 Top Parts, Bottom Parts, Left Parts and Right Parts – Part Definition
In cases where the Left Part or Right Part is specified within a Part Definition, it occupies the Left
Section or Right Section of the Part respectively keeping in view the Space Left and Space Right
of the Part. The attribute Space Right impacts the Right Parts by moving it from the right in order
to leave appropriate spaces. Similarly, Space Left impacts the Left Parts by moving it from Left in
order to leave appropriate spaces. If the intent is to have multiple parts printed horizontally, then
the Part Attribute Vertical should be set to No. Incases where the Vertical Attribute is set to Yes,
then all the parts within this part will be printed vertically. In such circumstances, the Left Parts will
position at the Top of the Screen/ Page and the Right Parts will position at the Bottom of the
Screen/ Page.

Incases where the Top Part or Bottom Part is specified within a Part Definition, it occupies the Top
Section or Bottom Section of the Part respectively keeping Space Top and Space Bottom of the
Part in account. The attribute Space Bottom impacts the Bottom Parts by moving it from the
bottom in order to leave appropriate space. Similarly, the attribute Space Top impacts the Top
Parts by moving it from the Top in order to leave appropriate spaces. If the intent is to have
multiple parts printed vertically, then the Part Attribute Vertical should be set to Yes. If the Vertical
Attribute is set to No, then all the parts within this part will be printed horizontally. In such circum-
46

TDL Reference Manual

stances, the Top Parts will be positioned at the Left of the Screen/ Page while the Bottom Parts
are positioned at the Right of the Screen/ Page.

3.2 Top Lines and Bottom Lines
These attributes are used to place different lines at different positions in a particular Part Defini-
tion. The attributes Top Lines and Bottom Lines can be specified in a Part Definition. However, the
attributes Top Lines/Lines can only be used in a Line and Field Definition.

Syntax

Top Lines : <Line1, Line2,…..>

Bottom Lines: <Line1, Line2,…..>

Example
Top Lines : Form SubTitle, CMP Action

Bottom Lines : VCHTAXBILL Total

3.2.1 Top Lines and Bottom Lines – Part Definition
The attribute Top Lines is used to place lines at the top while the attribute Bottom Lines is used to
place the lines at the bottom of the Part with respect to the Height specified within the Part Defini-
tion.

3.3 Left Field and Right Field
The attribute Left Fields can be specified in both Line and Field Definition whereas the attribute
Right Fields can only be specified in a Line Definition.

Syntax

Left Fields : <Field1, Field2, ….>

Right Fields : <Field1, Field2, ….>

Example
Left Fields : Medium Prompt, Chg SVDate, Chg VchDate

Right Fields : Trader TypeofPurchase, Trader QtyUtilisedTotal

Both Parts and Lines are not allowed within a Part. They are mutually exclusive entities.
Either Parts or Lines can be used.
 47

TDL Reference Manual
3.3.1 Left Fields and Right Fields – Line Definition
The attribute Left Fields and Right Fields specified in a Line Definition places the fields at their
respective position. The Left Fields starts printing from the Left to the Right of the Line while the
Right Fields starts printing from the Right to the Left of the Line. If Repeat Attribute is used in a
Line, specification of Right Fields are not allowed as by default, Repeat Attribute places the Field
specified to the Right of the Screen/Page.

3.3.2 Left Fields / Fields – Field Definition
The attribute Field is used to create fields containing one or more fields, like Group fields.
We can create multiple fields inside a single field using the Fields attribute.
The attribute Fields is useful when multiple Fields are required to be repeated in a Line. For
example, in case of a Trial Balance, two Fields i.e., Debits and Credits are required to be repeated
together if a new column is added by a user. The new column thus added, should again contain
both these fields, i.e., Debit and Credit. In a Line Definition, only one Field can be repeated. So,
a Field is required within a Field if more than one field requires to be repeated.

3.4 Align
The attribute Align aligns the contents of a Field as specified. The permissible values to this
attribute are Left, Center, Right, Justified and Prompt.

Syntax

Align : <String Value>

Example
Align : Right

3.4.1 Horizontal Align and Vertical Align
Horizontal align sets the alignment of the Form or Part horizontally while Vertical align sets the
alignment of the Form vertically.

Syntax

Horizontal Align : <Logical Value>

Vertical Align : <Logical Value>

Example
Horizontal Align : Right

Vertical Align : Bottom

;; Only for Form Definition

The alignment of the Form or Part across the width of the page is set by the attribute Horizontal
Align. The default alignment of the Form and Part is positioned in the Centre onscreen and in the
48

TDL Reference Manual

Left on print. Depending on the width of the Form and page, the Form or Part will be displayed/
printed leaving equal amount of space on the left and right of the Form.
The alignment of the Form across the height of the page is set by the attribute Vertical Align. The
default alignment of the Form is Centre on screen and Top on print. Depending on the height of
the form and page, the form will be displayed/printed leaving equal amount of space on the top
and bottom of the form.

4. Some Specific Attributes
4.1 Inactive
The Inactive attribute can be used in both a Field Definition and a Button Definition.
When the attribute Inactive is set to Yes in a Field Definition, the Field loses its content but the
size of the Field remains intact. In cases where a Button Definition, is used, the Button becomes
Inactive.
Syntax

Inactive : <Logical Formula>

Example
[Field: TBCrAmount]

Set as : $ClosingBalance

Inactive : $$IsDr:$ClosingBalance

In the previous example, the Field TBCrAmount is used to display the Credit Amount of the
Ledger in a Trial Balance. When the Ledger Balance is Debit, the amount should not be displayed
in the Credit Column but the Width should be utilized to avoid the Debit Field being shifted to the
Credit Field. The Credit Totals to be calculated and displayed will also exclude the Debit Amount.

4.2 Invisible
This attribute can be specified in a Part, Line or a Field Definition. Based on the logical condition,
this attribute decides whether the contents of the definition should be displayed or not. When this
attribute is set to Yes, it does not display the contents but the contents are retained for further
processing. In this case, contrary to Inactive, the size of the entire field is reduced to null but the
value is retained.
Syntax

Invisible : <Logical Formula>

4.2.1 Invisible – Field Definition
The invisible attribute when specified in a Field denotes that the current field is excluded from all
the further processing based on satisfying certain condition.

Example
[Field: Attr Invisible]

Set as : “Invisible Attribute”

Invisible : Yes
 49

TDL Reference Manual
In the previous example, the Field Attr Invisible is used to display Credit Amount of the Ledger in
a Trial Balance. When the Ledger Balance is debit, the amount should not be displayed/printed in
the Credit Column and the Width is not utilized allowing the other fields to utilize the space. The
Credit Totals being calculated and printed will also exclude the Debit Amount.

4.3 Widespaced
This attribute is used in a Field Definition to allow increased spacing between the characters of
the string value specified in the field. This attribute is used to create titles for the report / columns.

Syntax

Widespaced : <Logical Value>

Example
Widespaced : Yes

5. Definitions and Attributes for Formatting
5.1 Border
The Definition Border determines the type of lines required in a border which can be used by a
Part, Line or a Field which means that this definition can define customized borders for the user.
But it is ideal to use the predefined borders which are part of the default TDL instead of the user
defined, since almost all possible border combinations are already defined in the Default TDL.
Syntax

[Border: <Border Name>]

Top : <Values separated by a comma>

Bottom : <Values separated by a comma>

Left : <Values separated by a comma>

Right : <Values separated by a comma>

 Color : <Color Name – B&W, Color Name - Color>

PrintFG : <Color Name>

Top, Bottom, Left and Right
The Top, Bottom, Left and Right attributes in a Border Definition are used to add appropriate lines
which constitute the Border defined. The permissible values for these attributes are:

In a Report, at least one Part, Line and Field should be visible.
50

TDL Reference Manual

Thin/Thick : This specifies whether the Line should be thin or thick.
Flush : The border includes the spaces on the Top, Bottom, Left or Right.
Full Length : This ignores the space given at the Top, Bottom, Left or Right and
prints the border for the whole length.
Double : This parameter forces double line to be printed. In its absence, it is assumed
to be single line.

Example
[Border: Thin Bottom Right Double]

Bottom : Thin, Flush, Full Length

Right : Thin, Double

[Field: Total Field]

Set AS : $Total

Border : Thin Bottom Right Double

Color
The Color attribute of the Border Definition is used to specify the Color required for the border in
display mode. In a Border definition the attribute Color requires two values to be specified, viz.,
First is for a Black and White Monitor and the second in case of a Color monitor.

[Border: Top Bottom Colored]

Top : Thin

Bottom : Thin

Color : "Deep Grey, LeafGreen"

[Field: Total Field]

Set AS : $Total

Border : Top Bottom Colored

PrintFG
The PrintFG attribute of Border Definition is used to specify the Color required for the border
during printing.

[Border: Top Bottom Colored]

Top : Thin

Bottom : Thin

Color : "Deep Grey, Leaf Green"

Print FG : “Leaf Green”
 51

TDL Reference Manual
[Field: Total Field]

Set AS : $Total

Border : Top Bottom Colored

5.2 Style
The Definition Style can be used in the Field Definition only. This definition determines the appear-
ance of the text being displayed/printed by using a corresponding font scheme, Bold, Italic, Point
Size, Font Name, etc.
The Style attribute in Field Definition is used to format the appearance of the text appearing within
the Field, both in display and print mode provided the Print Style attribute is not used within the
current Field. The Print Style attribute is used in Field, if the Style required while displaying is
different from the Style required while printing.

Syntax

[Style: <Style Name>]

Font :

Height : <required Font Height in Point Size>

Bold : <Logical Formula>

Italic : <Logical Formula>

Font
This is the generic name of the Font supported by the Operating System. A Font is system
dependent and we do not have any control over them. However, one can select the required fonts
from among those available.

Example
[Style : Normal]

Font : if $$IsWindows then "Arial" else "Helvetica"

Height : @@NormalSize

[Style : Normal Bold]

Use : Normal

Bold : Yes

[Field : Party Name]

Set AS : $PartyLedgerName

Style : Normal

Print Style : Normal Bold
52

TDL Reference Manual

Height
The Height attribute within the Style Definition should be specified without any measurement
specified, since it is always measured in terms of Points. The value for the attribute Height can
have fractions and can be denoted by a formula which returns a number.
One can also grow or shrink the Height by a multiplication factor or percentage.

Example
[Style : Normal Large]

Use : Normal

Height: Grow 25%

Bold
The attribute Bold can only take logical values/ formula. In other words, it can either take a Yes or
No. This signifies that the Field using this Style should be printed in Bold.

Example
[Style : Normal Bold Large]

Use : Normal Large

Bold : Yes

Italic
The attribute Italic can only take logical values/ formula. In other words, it can either be set to Yes
or No. This signifies that the Field using this Style should be printed in Italics.

Example
[Style : Normal Large Italics]

Use : Normal Large

Italic: Yes

5.3 Color
The Definition Color is useful to determine the Foreground and Background Color for a Form,
Part, Field or Border, both in Display as well as in Print Mode.

A Color specification can be done by specifying the RGB Values (the combination of Red, Green
and Blue - each value should range from 0 to 255).

Syntax

[Color: <Color Name>]

RGB : <Red>, <Green>, <Blue>
 53

TDL Reference Manual
RGB
This is the second way of specifying color. One can specify the RGB value from a palette of 256
colors to obtain the required color. i.e., the values Red, Green and Blue can each range from 0 to
255. This gives the user an option to select from 24 bit color.
Example

[Color : Pale Leaf Green]

RGB : 169, 211, 211

[Field : Party Name]

Set as : $PartyLedgerName

Color : Pale Leaf Green

Print FG : Pale Leaf Green

5.4 Background and Print BG Attribute
The attribute Background is used to set the Background Color of a Form, Part or a Field in display
mode. The Print BG attribute is used to set the Background Color of a Form, Part or a Field in
print mode.
Syntax

[Form: <Form Name>]

Background : <Color Name Formula>

Print BG : < Color Name Formula>

[Part: <Part Name>]

Background : <Color Name Formula>

Print BG : <Color Name Formula>

[Field: <Field Name>]

Background : <Color Name Formula>

Print BG : <Color Name Formula>

Example
[Form : Salary Detail Configuration]

Background : @@SV_CMPCONFIG

[Part : Party Details]

Background : Red

Print BG : Green
54

TDL Reference Manual

[Field : Party Ledger Name]

Background : Yellow

Print BG : Red

5.5 Format Attribute
The attribute Format is used in the Field Definition which determines the Format of the value
being displayed/ printed within the Field.
Syntax

[Field: <Field Name>]

Format : <Formatting Values separated by comma>

The value for the Attribute Format, varies based on the data type of the Field.
Field of Type Number
Example

[Field: My Rate of Excise]

Set AS : $BasicRateOfInvoiceTax

Format : “No Comma, Percentage”

Field of Type Date
Example

[Field: Voucher Date]

Set AS : $Date

Format : “Short Date”

Field of Type Amount
Example

[Field: Bill Amount]

Set AS : $Amount

Format : “No Zero, No Symbol”

Field of Type Quantity
Example

[Field: Bill Qty]

Set AS : $BilledQty

Format : “No Zero, Short Form, No Compact”
 55

TDL Reference Manual
Learning Outcome
The following four definitions in TDL attract the dimensions:
 Form
 Part
 Line
 Field

In TDL, Dimensional attributes are used for specifying the dimensions.
The Definition Style determines the appearance of the text being displayed/printed by
using the corresponding Font scheme, Bold, Italic, Point Size, Font Name, etc.
The Definition Color is useful to determine the Foreground and Background color for a
Form, Part, Field or Border both in Display as well as Print Mode.
The attribute Format is used in the Field Definition which determines the Format of the
value being displayed/ printed within the Field.
56

Variables, Buttons and Keys
Introduction
A Variable is a storage location or entity. It is a value that can change, depending on the condi-
tions or on the information passed to the program.

In TDL, a Variable is one of the important definitions since it helps control the behavior of Reports
and their contents. Variables assume different values during execution and these values affect the
behavior of the Reports

A Variable definition is similar to any other definition.

Syntax

[Variable: <Variable Name>]

Attribute : Value

A Variable should be given a meaningful name which determines its purpose.

1. Attributes of a Variable
The attributes of a Variable determines its nature and behavior. Some of the widely used
attributes are discussed below:

1.1 Type
This attribute determines the Type of value that will be held by the variable. The Types of values
that a variable can handle are String, Logical, Date and Number. In the absence of this attribute, a
variable assumes to be of the Type String by default.

Syntax

[Variable: <Variable Name>]

Type : <Data Type>
 57

TDL Reference Manual
Example:
[Variable : ICFG Supplementary]

Type : Logical

A logical variable ICFG Supplementary is defined and used to control the behavior of certain
reports based on this logical value as configured by the user.

1.2 Default
This attribute is used to assign a default value to a variable, based on the ‘Type’ defined.

Syntax

[Variable: <Variable Name>]

Default : <Initial Value>

Value of the should adhere to the data type specified with Type Attribute.

Example
[Variable : DSP HasColumnTotal]

Type : Logical

Default : Yes

The Default Initial Value for the logical Variable DSP HasColumnTotal is set to Yes. This variable
will begin with an initial value Yes in the Reports unless overridden by the System Formula. We
will learn about the System Formula in the coming sections.

1.3 Persistent
This attribute decides the retention periodicity of the attribute. If the attribute Persistent is set to
Yes, then the latest value of the variable will be retained across the sessions, provided the
variable is not a local variable. We will learn about the concept of local and global variables
shortly.

Syntax

[Variable: <Variable Name>]

Persistent: <Logical Value>

Example
[Variable : SV Backup Path]

Type : String

Persistent : Yes

The attribute Persistent of the variable SV Backup Path has been set to Yes which means that it
retains the latest path given by the user even during the concurrent sessions of Tally.
58

TDL Reference Manual

1.4 Volatile
In cases where the Volatile attribute in the variable definition is set to Yes, then the variable is
capable of retaining multiple values i.e., its original value with its subsequent values are stored as
a stack. The default value of this attribute is Yes.

In cases where a new report R2 is initiated, using a volatile variable V, from the current report R1,
the current value of a volatile variable will be saved as in a stack and the variable can assume a
new value in the new report R2. Once the previous report R1 is returned back from R2, then the
previous value of the variable will be restored. A classic example of this is a drill down Trial
Balance.
Syntax

[Variable: <Variable Name>]

Volatile: <Logical Value>

Example
[Variable : GroupName]

Type : String

Volatile : Yes

The Volatile attribute of a Group Name Variable is set to Yes, which means that the Group Name
can store multiple values which have been recieved from multiple reports.

1.5 Repeat
This attribute is mainly used to achieve the Auto Column behaviour in various Reports. Each
Column is created with a subsequent Object in a Collection automatically till all the columns
required for Auto Columns exhaust. The Repeat attribute has its value as a variable which has the
collection of Objects for which columns need to be generated. Every time the Repeat is executed,
the column for subsequent Object is added.

Syntax

[Variable: <Variable Name>]

Repeat : <Variable Value>

Example
[Variable : SV FromDate]

Type : Date

Volatile : Yes

Repeat : ##DSPRepeatCollection

DSPRepeatCollection Variable receives the Collection Name from a Child Report which accepts
input from the user regarding the columns required. Variable SVFromDate gets repeated over the
subsequent period in the Collection each time the column repeats.
 59

TDL Reference Manual
2. The Scope of a Variable
The scope of a Variable can be broadly classified as follows:

Local
Global
Field acting as a variable

2.1 Local
A Variable is termed to be a local variable when it is associated to a Report. This means that the
scope of the variable covers only the current report and its components. It is not mandatory for
local variables to have an initial value.
Syntax

[Report : <Report Name>]

Variable: <Variable Name>

Example
[Report : Balance Sheet]

Variable : Explode Flag

Explode Flag Variable is made local to Report Balance Sheet by associating it using the Report
attribute Variable.

This variable retains its value as long as we work with this Report. On exiting the Report, the
original value if given is returned and the value modified within this report is lost. For example,
consider a situation where Stock Summary Report is being viewed with Opening, Inwards,
Outwards and Closing Columns enabled through Configuration settings. Once we quit this Report
and re-enter the Report, the variables return to the default settings.

2.2 Global
A Variable is termed to be a global variable when it is defined under System Variable Section.
This means that the scope of the variable covers all the reports. An initial value is mandatory for
global variables.

[System: Variable]

Variable: <Initial Type Based Value>

A Global Variable can also be made local to a Report by associating it to a Report as
discussed in the Local Variables mentioned above.
60

TDL Reference Manual

Example
[System : Variable]

BSVerticalFlag : No

The BSVerticalFlag Variable is made Global. Hence, this variable value being modified in a
Report is retained even after we quit and re-enter the Report.

The retention of a Global Variable can be done on two levels, i.e., either within the current session
or across the sessions. If the Variable attribute Persistent is set to Yes, then the modified variable
value is retained across the sessions else the value defaults back to initial value on re-entering
another session of Tally.

2.3 Field Acting as a Variable
The Variable attribute in a Field Definition is used to make the Field behave as a Variable. This
means that as soon as some value is entered/ altered in a Field, the variable assumes the same
value with immediate effect. The Variable need not be defined previously since it inherits its data
type from the Field itself.

For example: In a Trial Balance Report which is a drill down report there is a need to retain the
Group Name which has been selected by the user. So each time the user scrolls up and down,
the field value changes and the current field value is passed on to the variable immediately so that
if the current group is selected and drilled down, the report begins with the sub groups and
ledgers of the selected group.

Syntax

[Field: <Field Name>]

Variable: <Variable Name>

Example
[!Field : DSP Group Acc]

Variable : Group Name

All the Persistent Variable Values are stored in a File Named TallySav.Cfg in the folder
path specified in Tally.ini. Each time Tally is restarted, these variable values are
accessed from this file.

The Variables used in a Field Acting as a Variable are local variables and are local to
the Report
 61

TDL Reference Manual
This is used in the List of Accounts Report in Tally.ERP 9 wherein the optional Field DSP Group
Acc is made to act as a variable by using the Field attribute Variable and the value selected by the
user is passed on to this variable for further use.

3. Modifying the Variable Value
A Field attribute Modifies is used to modify the value of a variable.
Syntax

[Field : <Field Name>]

Modifies : <Variable Name>

Example
[Field : SLedger]

Modifies : SLedger

The SLedger Variable is modified with the value stored/keyed in the Field SLedger

4. Example - Variables
The following code snippet explains the usage of Local variable.

[Variable: LocVar]

Type : String

Default : "This is the default value"

;; Variable LocVar of Type String is defined and it is assigned a Default Value

[Report: Local Variable]

Variable : LocVar

;; At this point, Variable LocVar becomes a Local Variable for this Report

[Field: Local Variable Field]

Set As : "This is a Local Variable in Report"

Modifies : LocVar

 ;; Modifies the variable value with this Field contents

In the above code snippet, a local variable locvar is defined and locally attached to the Report
Local Variable. This Report modifies the Variable Value to ‘This is a Local Variable in Report’.
Once we exit from this Report, the value of the variable locvar modified in this Report is lost.
62

TDL Reference Manual

5. Buttons and Keys
The actions in TDL can be delivered in three ways: either by activating a Menu Item, by pressing
a Key or by activating a Button.

The definition of both Buttons and Keys are the same but at the time of deployment, Keys differ
from Buttons.

All the Buttons used within the attribute Buttons are visible on the button bar so that the user can
either click it or press the unique key combination. All the Buttons used within the attribute Keys
are invisible entities and key combination associated in the Key must be pressed to activate a key,
whereas to activate a button, either it can be clicked or key combination assigned for the button
can be pressed.

5.1 Attributes of Buttons/ Keys
5.1.1 Title
The Title attribute can be used to give a meaningful Title to the Button being displayed on the
Button Bar. This attribute is optional.

Syntax

[Key/Button: <Key/Button Name>]

Title : <Button Title>

Example
[Button : NonColumnar]

Title : “No Columns”

5.1.2 Key/ Keys
The Key attribute is used to give a unique key combination which can be activated by pressing the
same from any Report or Menu. This attribute is mandatory if action is specified in this definition.
Syntax

[Key/Button: <Key/Button Name>]

Key : <Combination of Keys>

Example
[Button: NonColumnar]

Key : Alt + F5

In case the Title is not specified, then by default, it assumes the Button Name as its title.
In cases where it is used as a Key, then the Title is ignored since the Keys are hidden
in a Menu or a Report.
 63

TDL Reference Manual
5.1.3 Action
The Action attribute is used to associate an Action with this Button. Every Button or Key defined
is for the purpose of executing certain predefined actions.
Syntax

[Key/Button: <Key/Button Name>]

Action: <Required Action>

Example
[Button: NonColumnar]

Action : Set : ColumnarDayBook: NOT ##ColumnarDayBook

5.1.4 Inactive
The Inactive attribute is used to activate the Button based on some condition. If the condition is
false, the button will be displayed but it cannot be activated.

Syntax

[Key/Button : <Key/Button Name>]

Inactive : <Logical Condition>

Example
[Button : Close Company]

Inactive: $$SelectedCmps < 1

Learning Outcome
A variable is a storage location or an entity. It is a value that can change, depending
either on the conditions or on the information passed on to the program.
The Variable attribute ‘Type’ determines the Type of value that will be held within it.
The attribute ‘Default’ is used to assign a default value to a variable, based on the ‘Type’
defined.
The attribute ‘Persistent’ decides the retention periodicity of the attribute.
The attribute ‘Modifies’ in a field definition is used to modify the value of a variable.
Title, Key, Action and Inactive are the attributes of a button definition.
64

Objects and Collections
Introduction
In the previous lesson the usage of Variables, Buttons and Keys were explained. In this lesson
the concept of ‘object and collection’ will be discussed in detail. Let us try to understand what an
object is in general, its importance and usage in TDL.

1. Objects
Any information that is stored in a computer is referred to as Data. Database is a collection of
information organized in such a way that a computer program can quickly select desired data. A
database can be considered as an electronic filing system. To access information from a
database a Database Management System (DBMS) is used. DBMS allows to enter, organize, and
select data in a database.

The organization of data in a database is referred to as the ‘Database Structure’. The widely used
database structures are hierarchical, relational, network and object-oriented.

In the hierarchical structure the data is arranged in a tree like structure. This structure uses the
parent –child relation ships to store repeating information. A parent can have multiple children but
a child can have only one parent. The child in turn can have multiple children. Information related
to one entity is referred to as an object. A database is a group of interrelated objects.

An object is a self-contained entity that consists of both data and procedures to manipulate the
data. It is defined as an independent entity based on its properties and behavior/functionality.
Objects are stored in a data base.

A relationship can be created between the objects. As discussed, the hierarchical structure has a
parent-child relationship. For example, child objects can inherit characteristics from parent
objects. Likewise, a child object can not exist with out a parent object.

After discussing the object concept in general, let us examine the Tally object structure in the
following section.
 65

TDL Reference Manaul
1.1 Tally Object Structure
The Tally data base is hierarchical in nature in which the objects are stored in a tree like structure.
Each node in the tree can be a tree in itself. An object in Tally is composed of methods and collec-
tion. Method is used to retrieve data from the database. A collection is a group of objects. Each
object in the collection can further have methods and collection. The structure is as shown in
Figure 6.1.

66

TDL Reference Manaul

 Figure 1.1 Tally Object Structure

Everything in TDL is an Object. As mentioned in the earlier chapters, Report , Menu, Company,
Ledger all are objects in TDL. The properties of objects in TDL are called Attributes. For example,
the attributes Object, Title, Form are all properties that define the Report object.
 67

TDL Reference Manaul
An object can have Methods and Collections as mentioned earlier. For example, the Object
Ledger contains the Methods Name, Parent etc. and the collections Address and Billwise Details.

As shown in the Figure 6.1, the Objects available at Level 1 are referred to as Primary objects and
objects which are at Level 2-n are referred as Secondary objects.

Two different types of objects are available in TDL. The following section describes the classifica-
tion of objects in TDL.

1.2 Tally Objects Types
The objects in TDL are classified in two types based on the their usage and behaviour as follows :

Interface Objects
Data Objects

Interface objects define the user interface while Data objects store the value in the Tally Primary
or Secondary database. Any data manipulation operation on the data object is performed through
Interface objects only. Figure 6.2 shows the classification of objects in TDL.

 Figure 1.2 Classification of objects

1.2.1 Interface Objects
Objects used for designing the User Interface are referred to as Interface objects. Report, Form,
Menu etc. are interface objects. Interface objects like Report and Menu are independent items
and can exist on their own. The objects Form, Part, Line, Field can’t exist independently. They
must follow the containment hierarchy as mentioned in the section Basic TDL Structure of Lesson
2 – TDL components.
68

TDL Reference Manaul

Example
[Field: Sample Fld]

Width: 22

[Line: Sample Ln]

Field: Name Field

TDL allows a re-usage of all the objects.There are two ways to obtain some more properties that
are required in an object:

The existing object can either be used in the new objects or in lieu of defining a new
object.
The existing object can be modified to add new properties.

The interface objects can be shared by other interface objects. For example, a single field can be
used in multiple lines. The following examples describe the discussed scenarios.

Example 1
[Field : Sample Fld]

Width : 22

Set As : “TDL Demo”

[#Field : Sample Fld]

Style : Normal Bold

The field Sample Fld will have both the properties. The width of the field is 22 and text is
displayed using the style Normal Bold.

Example 2
[Field: Sample Fld]

Width : 22

Set As : “TDL Demo”

[Field: Sample Fld1]

Use : Sample Fld

Style : Normal Bold

The field Sample Fld1 will have both the properties. The width of the field is 22 and the text is
displayed using the style Normal Bold.
 69

TDL Reference Manaul
Example 3
[Line : TitleA]

Field : Name Field

[Line: TitleB]

Field : Name Field

The field Name Field is used in both the lines TitleA and TitleB.

A set of available attributes of interface objects are predefined by the platform. A new attribute
can not be created for an interface object.

Interface objects are always associated with a Data Object and essentially add, retrieve or manip-
ulate the information in Data Objects.

1.2.2 Data Objects
Data is actually stored in the Data Objects. These objects are classified into two types viz.,
Internal objects and User defined objects / TDL objects.

Internal Objects – Internal objects are provided by the platform. They are stored in the Tally
Database. Multiple instances of internal objects can exist. In Tally.ERP 9, internal objects are of
several types. Examples of internal objects are Company, Group, Ledger, Stock, Stock Item,
Voucher Type, Cost Centre, Cost Category Budget, Bill and Unit of Measure.

User Defined Objects /TDL Objects – All the Objects which are defined by the user in TDL are
referred to as User Defined Objects or TDL objects. User defined objects are further classified as
Static Objects or Dynamic Objects.

Static TDL Objects cannot be stored in Tally Database. The data for the Static object is hard
coded in the program and can be used for the display purpose only.

Dynamic TDL Objects can be created from the data available in any of the following external
data sources:

XML Files from remote HTTP server
DLL files
From any type of database through ODBC

In TDL, the data from all these external data sources is available in a collection.
70

TDL Reference Manaul

1.3 Object Context
Each Interface object exists in the context of an Data Object. An Interface object either retrieves
information from the Data Object or stores information onto the Data Object.

The association of the Interface object with a Data Object can be done at the Report, Part, Line
and Field level. All the methods of the associated Data Object are available in the Interface object
which is said to be in the ‘Context’ of the associated Data Object.

The data is always retrieved from the database in context of the current object. All the data manip-
ulation operations are performed on the object in context only.

Any expression such as Formulae, Methods and so on which are evaluated in the Interface object
will be in the ‘Context’ of the Data Object. To understand the concept of an object context consider
the following example:

Example
When the Interface object Report is associated to the Data Object Ledger, then all the methods
and collection of the Ledger object can be referenced in the associated report. The Method
$Name when used in the field will display the name of the Ledger object associated at the Report
level. If no object is associated at the Report level then no data will be displayed in the field as
since there is no object in the context.

1.3.1 Example of Internal and TDL Object
Static TDL Objects / External Objects
As discussed earlier, a user can create Static TDL Objects for which the data is hard coded.
Consider the following examples of Employee Details.
Employee Details

In TDL two objects have to be created such that the EmpNo, Name, Date and Designation
becomes the attribute of the object. The code snippet to create these objects is as shown.

[Object : Emp 1]

EmpNo : E001

Name : “Krishna”

Date : Aug 01

Designation : Manager
 71

TDL Reference Manaul
[Object : Emp 2]

EmpNo : E002

Name : “Radha”

Date : Aug 01

Designation : “Asst. Manager”

Internal Objects
Consider the data for a ledger object which has multiple bill details associated with it.
Ledger Details

The above hierarchical structure shows that the ledger Krishna is created under the group Sundry
Creditors. It further contains multiple bill details. The Ledger Name is Krishna, the parent group is
‘Sundry Creditors’ and the closing amount is 3000. The two bills Bill 1 for the amount 1000 and Bill
2 for the amount 2000 are associated with the ledger Krishna.

2. Collections
A Collection is termed as a group of objects. It refers to a collection of zero or more objects. The
objects in the collection can be obtained from the Tally database or from external data sources
e.g. XML file.

In default TDL many collections are defined which are referred to as an Internal Collection. The
collections created by a user are called user defined collection. Object in a collections follow the
Tally object structure. That is each object of the collection can contain the Methods and Collection
and so on.

Please refer to the Appendix for the detailed structure of Internal Objects and Methods.
72

TDL Reference Manaul

A collection can be a collection of objects or a collection of collections.
Figure 6.3 shows the collection of objects.

 Figure 1.3 Collection of objects

The collection of collections is referred to as a Union of collection. This capability will be
discussed in detail in the section Collection Capabilities.
In TDL, the collections are of two types: Simple collection and Compound collections.

2.1 Simple and Compound Collections
Collections can have multiple Methods and Collection. They are classified as Simple Collection
and Compound Collection based on the constituents of the collection.
 73

TDL Reference Manaul
Figure 6.4 shows the classification of collection.

 Figure 1.4 Classification of collections

Simple Collections
Simple collections only have a single method which is repeatable. Simple Collections cannot have
sub-collections. The Name and Address are examples of Simple Collections.

Compound Collections
The collections which have sub-collections and multiple methods are called Compound Collec-
tion. Any Internal or External Collections of Primary or Secondary or user defined objects is an
example of a Compound Collection. In both Simple and Compound Collections, the index can be
used to fetch user-defined or internal methods of the Object. The Index can be either First or Last.
After describing the classification of a Collection, the following topic describes the various data
sources of a Collection.

2.2 Sources of Collection
Collection, the data processing artifact of TDL provides extensive capabilities to gather data not
only from Tally database but also from external sources using ODBC, DLLs and HTTP.
74

TDL Reference Manaul

Based on the source of data, the collections are referred to as External collection, ODBC collec-
tion, HTTP XML collection and Aggregate/summary collection.

The Collection of Internal Objects
In cases where a collection contains objects from Tally database, it is referred to as an Internal
Collection. In the collection of internal objects the attributes used are Type, Child Of, Belongs To.

External Collection
The collection of static TDL objects are referred to as an External Collection. The attribute used to
create an external collection is Object.

ODBC Collection
The Data Objects populated in the collection are from an external database using ODBC. The
attributes used are ODBC, SQL, SQL Objects, SQL Parms and SQL Values.

HTTP XML Collection
The Object of a collection is obtained from the XML file using HTTP. The file can be made
available either on the local machine or on the remote server. The attributes used in creating an
XML collections are Remote URL, Remote Request, XML Object Path and XML Object.

DLL Collection
A collection can be populated with objects obtained by executing a DLL file. The DLL’s can be
written using an external application to extend the existing functionality of Tally. This allows the
users to extend the kernel capability by adding their own functions.
External Plug-Ins are written as DLL’s and can be of two types:

C++ DLL’s
ActiveX DLL’s

In order to create the Collection that calls an external PlugIn the following attributes are used.
Values can be passed to the DLL’s as parameters.
Syntax

[Collection: My DLL Collection]

Plug-In : <path to dll>.<pInput param>

ActiveX Plug-In : <Project Name>.<Class Name>.<pInput param>

The value returned by executing the DLL will be available as objects in the collection.

2.3 Creating a Collection
TDL provides a set of attributes to create a collection and populate it with objects obtained from
various data sources. The set of attributes used in the collection is based on the data source as
mentioned in the section Sources of Collections. This section describes the attributes used in the
 75

TDL Reference Manaul
creation of an internal and external collection. Creating collections from various data sources will
be explained later.

2.3.1 Collection of Internal Objects
To create a collection of internal objects the attribute Type is used.This attribute accepts the object
type name, as a value. The collection definition for creating an internal collection has the following
syntax.
Syntax

[Collection: <Collection Name>]

Type : <Object Type>

<Collection Name> This is a user defined name for the collection.
<Object Type> This is the name of any of the internal objects. Eg.Group, StockItem, Voucher etc.

Attribute – Type
This attribute is used to define a collection of a particular Type or Subtype. The ‘Type’ can take
values of the default TDL objects as well as the user defined fields (UDF).

Syntax

Type : <ObjectType>[: <ParentType>]

<Object Type> This is the name of the object type or its sub-type.
<Parent Type> This is optional and is required if the subtype is to be specified.

Example
[Collection: My Collection]

Type : Ledger

The code snippet, My Collection consists of a collection of Ledgers which is an Internal object.

2.3.2 External Collection
To create a collection of Static TDL objects the attribute used is Object. The collection definition
for creating external collection has the following syntax:

Syntax

[Collection: <Collection Name>]

Object : <Object Name>, <Object Name>, ……., <Object Name>

<Collection Name> This is the user defined name for the collection.
<Object Name> These are names of user defined objects.
76

TDL Reference Manaul

Attribute – Object
The Object attribute is used to create a collection of user defined objects. A collection can have
multiple collections/objects in it.
Syntax

Object : <List of Objects>

<List of Objects> This is a comma separated list of objects.

Here, the objects are defined using the Object definition as shown in the following example.
Example

[Collection : Emp]

Object : Emp1, Emp2

[Object : Emp1]

EmpName : "Ram Kumar"

Age : "25"

[Object : Emp2]

EmpName : "Krishna Yadav"

Age : "30"

The Objects of Collection Emp has the Methods EmpName and Age.

In TDL, Methods are used to retrieve data from Objects and Collections. The following section
explains the Usage and Types of method.

3. Object Association
Object Association is the process of linking an Interface Object with one or more Data Objects.
Each Interface Object must be in the context of a Data Object. A TDL programmer can associate
an Interface Object with any Data Object. If a Interface object is not explicitly associated with any
Data Object, then Anonymous Object is associated to it. Anonymous Object is a Primary data
Object provided by platform. It has no methods, sub-collections, or parameters.

Object Association can be done at the following levels:
Report Level Association
Part Level Association
Line Level Association
Field Level Association

Once an Object is associated at the Top level, the child level Interface Objects inherits it, unless it
is explicitly overridden. If there is no explicit association of the Data Object at the Report level, it is
associated with the Anonymous Object.
 77

TDL Reference Manaul
In Release 3.0, the Object association becomes more natural and simpler.

3.1 Report Level Object association
A Report is normally associated with a data object, which it gets from the previous Report and if
not, will be associated with the anonymous object. From Release 3.0 onwards, the syntax for
association has been enhanced to override the default association as well. The Report attribute
‘Object’ has been enhanced to take an additional optional value as ‘Object Identifier Formula’.
Syntax

Object: <ObjectType> [: <ObjectIdentifierFormula>]

Where:
<ObjectType>This is a Type of Primary Object
<ObjectIdentifierFormula> This is an optional value and is refers to any formula which evaluates
the name of Primary Object.

Example 1: Without the Object Identifier
[#Form: Sales Color]

Delete : Print

Add : Print: New Sales Format

[Report: New Sales Format]

Object : Voucher

Default Sales Color Form is modified to have a new print format ‘New Sales Format’. This Report
gets the voucher object from the previous Report.

Example 2: With the Object Identifier
[Report: Sample Report]

Object : Ledger : “Cash”

The Ledger ‘Cash’ is associated to the Report ‘Sample Report’. Now components of a ‘Sample
Report’ by default, inherit this ledger object association.

3.2 Part Level Object Association
Part inherits the Object from the Report/Part/Line, by default. This can be overridden in two ways.

3.2.1 Using the ‘Object’ attribute specification in the Part definition
The syntax of an Object attribute at the part level is as follows :
78

TDL Reference Manaul

Syntax

Object : <SupplierCollection> : <SeekTypeKeyword> [: <SeekCondition>]

Where:
<SupplierCollection> This is the name of the Collection of Secondary Objects.
<SeekTypeKeyword> This can be First or Last which denotes the position index.
<SeekCondition> This is an optional value and is a filter condition to the supplier collection.

Example: Part in the Context of Voucher Object
[Part: Sample Part]

Line : Sample Line

Object : InventoryEntries:First:@@StkNameFilter

Scroll : Vertical

[System: Formula]

StkNameFilter : $StockItemName = "Tally Developer”

The first inventory entry which has stock item “Tally Developer” is associated with Part ‘Sample
Part’.

Only sub-objects can be associated at part level for which the primary object is associated at the
Report level. To overcome this limitation a new attribute ‘Object Ex’ is introduced at part level in
release 3.0.

3.2.2 Using ‘Object Ex’ attribute specification in Part definition
The attribute Object Ex provides the ease of using enhanced method formula syntax while speci-
fying the object association. Now even the Primary Object can be associated to a Part, which was
not possible with the Object attribute of Part Definition.

Syntax

Object Ex : <Method Formula Syntax>

Where:
<Method formula syntax> is, <Absolute Spec>.[<SubObjectSpec>]
<Absolute Specification> is (<Object Type>, <Object Identifier Formula>). If only Absolute
Spec. is given then it should end with dot (‘.’).
<Sub Object Specification> is CollectionName[Index,<Condition>]
 79

TDL Reference Manaul
Example 1
[Part: Sample Part]

Object Ex: (Ledger,"Customer")

The Ledger object “Customer 1” is associated to the Part ‘Sample Part’. Since only the absolute
specification used, the Object specification is ends with ‘.’

Example 2
[Part: Sample Part]

Object Ex: (Ledger,"Customer").BillAllocations[1,@@Condition1]

[System: Formula]

Condition1: $Name = "Bills 2"

The Secondary Object ‘Bill Allocation’ is associated with the Part ‘Sample Part’.
The Data Object associated to some other Interface Object can also be associated to a Part. This
aspect will be elaborated in the section ‘Object Access via UI Object’ of the Enhancement
training.
The enhanced method formula syntax is discussed in detail under the section ‘Accessing
Methods’.

3.3 Line Level Object Association
An object can be associated to a Line by Part attribute ‘Repeat’. Now, the Part attribute ‘Repeat’ is
enhanced to support the following.

Extraction of collection from any Data object.
Extraction of collection from UI Object associated Data object. This aspect will be elabo-
rated in the section “Object Access via UI Object”.

3.3.1 Attribute - Repeat
Repeat : <Line Name>: <Coll Name>: [<Supplier Coll> : <SeekTypeKeyword> :

 <SeekCondition>]

Where:
<Coll Name> This the name of the Collection and if that Collection is present in one level down of
the object hierarchy then Supplier Collection needs to be mentioned.
<SupplierCollection> This the name of the Collection of secondary Objects.
<SeekTypeKeyword> This can either be First or Last which denotes the position index.
<SeekCondition> This is an optional value and is a filter condition to the supplier collection.
80

TDL Reference Manaul

Example: Part in the context of Voucher Object
[Part: Sample Part]

Line : Sample Line

Repeat : Sample Line: Bill Allocations: Ledger Entries: First: +

 @@LedFormula

[System: Formula]

LedFormula : $LedgerName = “Customer”

The Line ‘Sample Line’ is repeated over Bill Allocations of first Object Ledger entries which
satisfies the given condition.

Alternate Repeat
Instead of specifying the ‘<Coll Name>: [<Supplier Coll> : <SeekTypeKeyword> : <SeekCondi-
tion>]’ the new method formula syntax can be used as shown below:

Syntax

Repeat : <Line Name> : <MethodFormulaSyntax>

Where:
<MethodFormulaSyntax> is <Absolute Spec>.<SubObjectSpec>
<Absolute Spec> is (<Object Type>, <Object Identifier Formula>)
<Sub Object Spec> is CollectionName[Index,<Condition>]

Example
[Part: Sample Part]

Line : Sample Line

Repeat: Sample Line: (Ledger, “Customer”).BillAllocations

The Line ‘Sample Line’ is repeated over Bill Allocations of Object Ledger for Customer ledger.

3.4 Field Level Object Association
By default, it is inherited from the Parent line or Field (if field inside a field). This cannot be overrid-
den. However Field also allows Object Specification syntax. This association if specified acts as
the ‘Secondary Context Object’ for the Field. During any formula evaluation, if the formula /
method fails in the context of the Primary Object, the Secondary Object is tried then.

4. Methods
Each piece of information stored in the data object can be retrieved using a method. A method
either performs some operation on the object or retrieves a value from it. To retrieve the value
from the database, the storage name is prefixed with the $ symbol. TDL provides a pre-defined
Methods and allows the user to create methods as well.
Methods are classified as Internal or External methods.
 81

TDL Reference Manaul
4.1 Internal Methods
The methods which are defined by the platform are called as Internal Methods. For example the
methods Name, Address, Parent are the internal Methods of Object Ledger.

4.2 User Defined/External Methods
A user can change the behaviour or perform an action on the internal object by defining new
Methods. Methods defined by the user are referred to as External methods or User defined
methods.
Example: A Method DiffBal can be created for an Object Ledger which gives the difference of the
total debit amount and total credit amount.

4.3 Accessing Method
The Method of an object can be accessed in TDL in three different ways, based on the context of
an Object.

Accessing data from the current Object
Incase you are already in the object context, use the Method name prefixed with $ directly.
Syntax

$<MethodName>

<Method Name> This is the name of the Method of the object in context.

Example
$CompanyName

Accessing by Reference
In cases where the user is not in the object context, or is in a different object context then
following syntax may be used:
Syntax

$<Method Name>:<Object Name>:<formula>

<Method Name> This is the name of the Method which belongs <object name>.
<Object Name> This is the name of the object.
<Formula> This is the value based on which the Method value is retrieved.

Example
$Name:Ledger:##SVLedgerName

Accessing by using the Index
In cases where the user is not in the object context, or in a different object context then the
following syntax may be used:
82

TDL Reference Manaul

Syntax

$<Method Name>:< Collection Name>: <Seek Type>

<Method Name> This is the Name of the Method which belongs <Collection Name>.
<Collection Name> This is the Name of the Collection.
<Seek Type> This is the searching direction. It can either be the First or Last.

Example
$LedgerName:LedgerEntries:First

4.3.1 Directly Accessing Data from Any Object
The Method formula syntax allows direct access to any object Method including its sub-collections
to any level with a dotted notation framework.The values from any object anywhere can be
accessed without making the object as the current object. This syntax is introduced to support
access out of the scope of the Primary Object and to access the Sub object at any level using (.)
dotted notation with index and condition support.

Syntax

$<PrimaryObjectSpec>.<SubObjectPathSpec>.MethodName

Where:
<Primary Object Spec> can be (<Primary Object Type Keyword>, <Primary Object Identifier
Formula>)
<SubObjectPathSpec> This is given as the CollectionName [<Index Formula>, [<Condition>]]
<MethodName> This refers to the name of the Method in the specified path.
<Index Formula> This should return a number which acts as a position specifier in the Collection
of Objects matching the given <condition>.

Example: Assuming that the Voucher is the current object
1. To get the Ledger Name of the first Ledger Entry from the current Voucher:

Set As : $LedgerEntries[1].LedgerName

2. To get the amount of the first Ledger Entry on the Ledger Sales from the current voucher
(Sales Invoice):

Set As : $LedgerEntries[1,@@LedgerCondition].Amount

LedgerCondition : $LedgerName = “Sales”

3. To get the first Bill Name of the first Ledger entry on the Party Ledger from the current
voucher (Sales Invoice):

Set As: $LedgerEntries[1,@@LedgerCondition].BillAllocaions[1].Name

LedgerCondition : $LedgerName = @@InvPartyName
 83

TDL Reference Manaul
4. To get the OpeningBalance of the first Bill for the Party Ledger Acme Corp:
Set As: $(Ledger,@@PartyLedger).BillAllocations[1].OpeningBalance

PartyLedger : “Acme Corp”

The Primary Object specification is optional. If it is not specified, the current object will be consid-
ered as the Primary Object. A Sub-Collection specification is optional. If not specified, Methods
from the current or specified primary object will be made available. The Index specifies the
position of the Sub-Object to be picked up from the Sub-Collection. This Condition is ‘Filter’ which
is checked on the objects of the specified Sub-Collection.
<Primary Object Identifier Formula>, <Index Formula> and Condition can be a value or
formula.

The Index Formula can be any formula evaluating to a number. The Positive Number indicates a
forward search while a negative number indicates a backward search. This can also be a keyword
First or Last which is equivalent to specifying 1 or -1 respectively.

In cases where both the Index and Condition are specified, the index is applicable on the
Object(s) which satisfies the condition so that one gets the nth Object which clears the condition.
Let’s say for example, if the Index specified is 2 and Condition is Name = “Sales”, then the second
object which matches the name Sales will be picked up.

The Primary Object Path Specification can either be Relative or Absolute. A Relative Path is
referred to by using empty parenthesis () or a dotted path to refer to the Parent object relatively. A
SINGLE DOT denotes the current object, DOUBLE DOT the Parent Object, TRIPLE DOT the
Grand Parent Object and so on within an Internal Object. The Absolute Path refers to the path in
which the Primary Object is explicitly specified.

To access the Methods of Primary Object using a Relative Path, the following syntax is used.

Syntax

$().<MethodName> or $..<MethodName> or $…<MethodName>

Example
With regard to the context of LedgerEntries Object within Voucher Object, the following have to be
written to access the Date from its Parent Object which is the Voucher Object.

$..Date

To access the Methods of Primary Object using the Absolute Path :

Example
$(Ledger, “Cash”).OpeningBalance
84

TDL Reference Manaul

5. Collection Capabilities
Having understood the concept of Objects, Collection, Methods and Object association, let us
now concentrate on understanding the concept of a Collection as a Data Processing Artifact in
TDL.
In the previous sections, we have already seen that a Collection can contain objects from the Tally
Database or populate objects from an external data sources as well. In the coming sections we
will discuss on the capabilities of collection from the perspective of data processing capabilities.
Let us segregate these capabilities into:

Basic Capabilities
 Union
 Filtering
 Sorting
 Searching

Advanced Capabilities
 Extraction
 Aggregation
 Usage As Tables
 Integration Capabilities using HTTP XML Collection
 Dynamic Object Support
 Collection Capabilities for Remoting

In this training program we will be covering the Basic capabilities in detail with all the relevant
attributes and functions for achieving the same.

Some portions of Advanced capabilities which were available prior to Tally.ERP 9 will be covered
here.The latest developments pertaining to this, will be covered in our training program ‘TDL
Enhancements for Tally.ERP 9’

5.1 Basic Capabilities
5.1.1 Union
A Collection can be created as a combination of multiple Collections. The total number of objects
in the resultant Collection is the sum of objects of the subsequent Collections. This is known as a
Union. The following figure shows a Collection of Sub-collection. The Sub-collection. which can
further be a Union of Collections and so on.
 85

TDL Reference Manaul
 Figure 1.5 Collection of Sub-collection

The example shows that Collection C1 contains collections Collection C2 and Collection C3.
Likewise, Collection C2 further contains collections Collection C4 and Collection C5.
The attribute Collection is used to create a Union as follows:

The attribute Collection
The attribute Collection is used to specify a Collection under the main Collection. All the objects
belonging to the Sub collections are available in the resultant Collection.
86

TDL Reference Manaul

Syntax

Collection : <List of Collections>

<List of Collections> This is a comma separated list of collection. The Collections that are used
can be of different types.

Example
[Collection : Groupandledger]

Collections : Group, Ledger

In the example above, both the Group Collection and Ledger Collection are used under the main
collection Group and Ledger.

5.1.2 Filtering
This is required to retrieve only a specific set of objects from a Collection, then the collection
needs to be filtered. Filtering is applied on the Collection based on a condition. All the objects
which satisfy the given condition are retrieved and are available in the Collection.

Filtering Attributes
The attributes used for applying a filter are ChildOf, BelongsTo and Filter

The attribute Child Of
The ChildOf attribute helps to control the display of the contents of a collection. It retrieves only
those objects whose direct parent is the string specified as the parameter of this attribute.

Syntax

ChildOf : <String Formula>

Example
[Collection : My Collection]

Type : Ledger

ChildOf : "Sundry Debtors"

It will return all the ledgers grouped directly under the group ‘Sundry Debtors’
 87

TDL Reference Manaul
ChildOf : ""

The attribute BelongsTo
The attribute Belongs To is used along with the ‘Child Of’ attribute. This attribute determines
whether to retrieve the first level of objects under the value specified in ChildOf or include all the
objects upto the lowermost level .BelongsTo takes a logical value.

Syntax

BelongsTo : <Logical Value>

<Logical Value> This can be either Yes or No.

Example
Consider the previous example of accounts. The following code is an extension to the previous
code.

[Collection: My Collection]

Type : Ledger

ChildOf : "Sundry Debtors"

BelongsTo : Yes

This code will retrieve all the objects directly under the group ‘Sundry Debtors’ as well as all the
objects which are under the sub groups of ‘Sundry Debtors’.

The attribute Filter
The attribute ‘Filter’is used to specify the condition for filtering the objects. The Filter attribute
takes a system formula. The condition is specified in the formula. If more than one filter has to be
specified it can be separated by a comma.
Syntax

Filter : <FilterName>

<Filter Name> This is the name of the global formula.

The following definition code will return all the ledgers under the group blank. By
default, Tally returns the ledger ‘Profit and Loss’
88

TDL Reference Manaul

Example
[Collection : LtdDebtors]

Type : Ledgers

ChildOf : “Sundry Debtors”

Filter : NameFilter

[System: Formula]

NameFilter : $Name contains "Ltd" OR $Name contains "Limited"

The Namefilter is used to fetch only those objects whose name contains the string “Ltd” or
“Limited” .

Filtering Functions
The function FilterAmtTotal
This is used to get the sum of the value returned by the specified expression when applied to all
the Objects that satisfy the given filter expression in a Collection. The value returned is of the type
Amount.

Syntax

 $$FilterAmtTotal:<CollectionName>:<FilterExpression>:<ValueExpression>

<CollectionName> This is the name of a Collection,
<FilterExpression> This is a System Formula.
<Filter Expression> This is evaluated for each Object and the resultant Objects that clear the
filter are selected for further processing.
<ValueExpression> is any valid expression to be evaluated on each Object of the Collection.

Example
$$FilterAmtTotal : AllLedgerEntries : CashBankEntries : $Amount

[System :Formula]

CashBankEntries : $$IsCashLedger : $LedgerName AND $$IsDr : $Amount

The filter in the example, checks whether the ledger is a Cash Ledger and the amount is of the
type debit. $$IsCashLedger is a logical Function which checks whether the argument passed is a
Cash Ledger or not. This statement can be evaluated only in the context of a Voucher Object.

The function FilterQtyTotal
This is similar to FilterAmtTotal except that the ValueExpression should evaluate to the type
Quantity.
 89

TDL Reference Manaul
Syntax

$$FilterQtyTotal:<CollectionName>:<FilterExpression>:<ValueExpression>

<CollectionName> This is the name of a Collection
<FilterExpression> This is a System Formula.The Filter Expression is evaluated for each Object
and the resultant Objects that clear the filter are selected for further processing.
<ValueExpression> This refers to any valid expression to be evaluated on each Object of the
Collection.

The Function FilterCount
This function is used to get the total number of Objects in a Collection after the filters are applied.

Syntax

$$FilterCount : <CollectionName> : <FilterExpression>

<CollectionName> This is the name of a Collection,
<FilterExpression> This is a System Formula

Example
$$FilterCount :AllLedgerEntries:HasBankEntry > 0

[System : Formula]

HasBankEntry : ($$IsDr:$Amount != $IsDeemedPositive:+

 VoucherType:$VoucherTypeName)+

 AND($$IsLedOfGrp:$LedgerName:$$GroupBank+

 OR $$IsLedOfGrp:$LedgerName:$$GroupBankOD)

The example confirms whether the voucher has any Ledger under the Group Bank or BankOD.
IsLedOfGrp Function accepts two parameters and returns as true if parameter 1 is a ledger of a
Group mentioned in parameter 2. GroupBankOD and GroupBank are functions which returns the
name of the reserved groups Bank OD and Bank.

The Function FilterValue
This function is used to get the value of a specific expression based on the position specified in
the set of objects filtered by the expression.

Syntax

$$FilterValue :<ValueExpression> : <CollectionName> :

 <PositionSpecifier> : <FilterExpression>

<CollectionName> This is the name of the Collection.
<FilterExpression> This is the filter applied to get a set of filtered Objects.
90

TDL Reference Manaul

<PositionSpecifier> This denotes the position.
<ValueExpression> This refers to any valid expression to be evaluated on each Object of the
Collection.

Example
$$FilterValue:$LedgerName:LedgerEntries:First:IsPartyLedger

The example filters all the objects within LedgerEntries to satisfy the filter condition IsPartyLedger
and returns the first value of the requested method LedgerName that satisfies the condition.

Some other Functions Used
GroupSundryDebtors
It returns the name of the group Sundry Debtor even if the user re names it.

Syntax

$$GroupSundryDebtors

Example
[Collection :Sample Coll]

Type : Ledgers

Child Of : $$GroupSundryDebtors

The above code will populate the Collection Sample Coll with all the objects that are under the
Group “Sundry Debtor”.

In case the user has renamed the group “Sundry Debtors” as “My Sundry Debtors”, the following
code snippet won’t have any objects in the collection.

[Collection :Sample Coll1]

Type : Ledgers

Child Of : “Sundry Debtors”

But in this case, the $$GroupSundryDebtor will populate the collection with all the objects that are
under the Group Sundry Debtor even if the user renames the group.

GroupSundryCreditors
It returns the name of the group Sundry Creditor even if the user re names it.

Syntax

$$GroupSundryCreditors
 91

TDL Reference Manaul
Example
[Collection :Sample Coll]

Type : Ledgers

Child Of : $$GroupSundryCreditors

The above code will populate the Collection Sample Coll with all the objects that are under the
Group “Sundry Creditor”.

In case the user has renamed the group “Sundry Debtor” as “My Sundry Debtors”, the following
code snippet won’t have any objects in the collection.

[Collection :Sample Coll1]

Type : Ledgers

Child Of : “Sundry Creditors”

But in this case the $$GroupSundryCreditor will populate the collection with all the objects that are
under the Group “Sundry Creditor” even if the user renames the group.

5.1.3 Sorting
Sorting refers to the arrangement of objects in a specific order within the collection.
The ordering is done on the basis of a specific method and the sort order can either be ascending
or descending. The attribute Sort is used for this purpose.

The attribute Sort
A collection can be sorted by specifying the sort sequence using the ‘Sort’ attribute. The collection
can be sorted by a combination of fields in ascending as well as in descending order.

Syntax

Sort: < Sort Name> : <List of Methods>

<List Of Methods> Is a comma separated list of methods. The sorting will be done on the basis
of value of the methods. The default sort order is ascending. Prefix the Methods name with ‘-‘ for
the descending sort order.

Example
[Collection: My Collection]

Collections : MyLedger

Sort : Default : $ClosingBalance, $Name
92

TDL Reference Manaul

5.1.4 Searching
Collection capabilities have been enhanced to enable the indexing of objects based on a particu-
lar method. Whenever a collection is indexed on a particular method, it allows instant access to
the corresponding values without the need for a complete scan.

The Attribute –Search Key
Syntax

Search Key : < Combination of Method name/s >

This implies that a unique key is created for every object which can be used to instantly access
the corresponding objects and its values.
The function which is used to retrieve the values from a collection based on the key specified is
expressed as the $$CollectionFieldByKey.

The Function CollectionFieldByKey
Syntax

$$CollectionFieldByKey:<Method Name>:<Key Formula>:<Collection Name>

Where:
<Method Name> This is the name of the method.
<Key Formula> This is a formula that can be mapped to the methods defined in the search key
exactly in the same order.

Example
[Collection: My Ledgers]

Type : Ledger

Search Key : $Name

[Field : My Closing Bal Field]

Set as : $$CollectionFieldByKey:$ClosingBalance:@MySearchKey:+

 My Ledgers

MySearchKey : #LedName

In the above example we have defined a search key on $name for the collection MyLedgers. In
the Field the value $Closing Balance is retrieved based on the name of the ledger. In this case
the retrieval is much faster as compared to ordinary retrieval.

This capability is particularly useful in the case of matrix reports ie when two or more dimensions
need to be represented as rows and columns. In that case defining the search key on a method
combination and using $$CollectionFieldByKey for value retrieval improves the performance
drastically.
 93

TDL Reference Manaul
The usage and examples based on the explanation above will be covered in detail in our training
program “TDL Enhancements for Tally.ERP 9”

5.2 Advanced Capabilities
5.2.1 Extraction and Chaining
The Collection capabilities have been enhanced to extract information from the collection using
other collections including its sub-objects with the choice of method(s), filter(s) and sort-order.
Specific attributes have been added at the collection level to achieve the same.

Prior to Tally.ERP 9, extraction was possible using specific function $$CollectionField.

The Function CollectionField
This is used to get the value of a specified expression as applied on the nth Object of a Collection.

Syntax

$$CollectionField:<ValueExpression>:<PositionNumber>:<CollectionName>

<CollectionName> This is the name of a collection.
<ValueExpression> This is any valid expression to be evaluated on the element at position
<PositionNumber> in the collection.

Example
$$CollectionField:$Amount:1:AllLedgerEntries

The example returns the first value of the Method, Amount from AllLedgerEntries Object
This function affects the performance of the report in terms of time taken to display the report.

A detailed discussion on the enhancements for extraction, chaining and reuse will be covered in
the training program “TDL Enhancements for Tally.ERP 9”

5.2.2 Grouping & Aggregation
A major technological advancement in this release of Tally.ERP 9 is “Data Roll up in TDL Collec-
tion – GROUP BY”, which is a part of the TDL language capabilities. This is a milestone achieve-
ment over the past 10 years. This will now facilitate the creation of large summary tables of
aggregations in a single shot using the new attributes of the Collection description.This allows us
to Walk down the object hierarchies and gather values to summarizes them in one scan. Overall,
it reduces the TDL code complexity, resource require¬ment and increases performance drasti-
cally in case of reports generated using this new capability.

The attributes used for extraction, chaning,aggregation and grouping are Walk, By, Fetch,
Compute, AggrCompute. A detailed discussion on the enhancements for aggregation and
Grouping using the new attributes will be covered in the training program “TDL Enhancements for
Tally.ERP 9”
94

TDL Reference Manaul

Prior to Tally.ERP 9, the totals were generated using the Total and aggregation functions like Col-
lAmtTotal or FilterAmtTotal on collections. These have certain advantages and disadvantages.
While they provide excellent granularity and control, each call is largely an independent activity to
gather the data set and then aggregate it. This significantly affects the performance of the reports.

Let us now discuss the various functions which are available for summarization and aggregation.

The Function CollAmtTotal
This function is used to get the sum of values of Type Amount returned by a specified expression
when applied to all Objects in a given Collection. The return value is of type Amount.

Syntax

 $$CollAmtTotal:<CollectionName>:<ValueExpression>

<CollectionName>This is the name of a Collection
<ValueExpression> This is any valid TDL expression to be evaluated on each Object in the Col-
lection.

Example
$$CollAmtTotal:LedgerEntries:$Amount

This code snippet gets the sum of values in the Method Amount after it is applied on each Object
in the Collection LedgerEntries. This statement will hold good only when you are in the context of
Voucher Object.

The Function CollQtyTotal
This function is to get the sum of values of Type Quantity returned by the specified expression
when applied to all Objects in a given Collection. The value returned is of a Type Quantity.

Syntax

$$CollQtyTotal:<CollectionName>:<ValueExpression>

<CollectionName> This is the name of a Collection
<ValueExpression> This refers to any valid TDL expression to be evaluated on each Object of
the Collection.

Example
$$CollQtyTotal:InventoryEntries:$BilledQty

Each Inventory entry in the current Voucher Object is picked up and the Method BilledQty is
evaluated on it. The resultant quantity is summed up to get the result of the statement.
 95

TDL Reference Manaul
The Function CollNumTotal
This function is used to get the sum of values of Type Number returned by the specified expres-
sion when applied to all Objects in a given Collection. The value returned is of the Type Number.
Syntax

 $$CollNumTotal:<CollectionName>:<ValueExpression>

<CollectionName> This is the name of a Collection
<ValueExpression> This refers to any valid expression to be evaluated on each Object of the
Collection.

Example
$$CollNumTotal:InventoryEntries:$Height

Each Inventory entry in the current Voucher Object is picked up and the Method Height evaluated
on it. The resultant height is summed up to get the result of the statement. Here, Height is an
external Method of Object Inventory Entry in a Voucher.

5.2.3 Usage as Tables
TDL allows you to display the values obtained from the collection as a pop-up table. Earlier the
values of voucher and the ODBC data can’t be displayed as a collection. Now all limitations per-
taining to usage of Collections as Tables have been completely eliminated. Any collection which
can be created in TDL can be displayed as a table now. Collection with aggregation and XML Col-
lections can also be used as Tables.

5.2.4 Integration Capabilities using HTTP XML Collection
The Collection capability has been enhanced to gather live data from HTTP/web-service deliver-
ing XML. The entire XML is automatically now converted to TDL objects and is available natively
in TDL reports as $ based methods. Reports can be shown live from an HTTP server. The
attributes in collection for gathering XML based data from a remote server over HTTP are Remo-
teURL, RemoteRequest, XMLObjectPath, and XMLObject.

A detailed discussion on this will be covered in the training program “TDL Enhanceemnts for
Tally.ERP 9”

5.2.5 Dynamic Object Support
When a collection is used for editing (alter/create), objects are dynamically added to the collection
when a new line is repeated over the same. The type of object which is added depends on the
specification in the TYPE attribute. In case the TYPE attribute is not specified it defaults to adding
a standard empty object.
However the following holds true for a COLLECTION keeping in mind the latest enhancements:

It can be made up of multiple types of objects (say Ledgers and Groups)
It can have TDL defined objects which are retrieved from XML file.They are specified
using an XML Object
96

TDL Reference Manaul

It can have aggregated objects
Depending solely on the TYPE attribute to make a decision, the object type is a constraint with
respect to the above facts. This is now being removed with the introduction of a new attribute
which will independently govern the type of object to be added to the collection on-the-fly. The
following is now supported in a collection.

NEWOBJECT: type-of-object: condition

A detailed discussion on the subject can be accessed from our training program “TDL Enhance-
ments for Tally.ERP 9”

5.2.6 Collection Capabilities for Remoting
Enabling access to your organizational data in an ‘any-time, any-where’ and yet being truly usable
is what Tally.ERP 9 delivers.With Tally.NET enabled remote access, it will be possible for any
authorized user to access Tally.ERP 9 from anywhere.

Major Enhancements have taken place at the collection level to achieve remoting capabilities.The
attributes Fetch,Compute and AggrCompute provided at the Collection level and FetchObject and
FetchCollection at the Report level significantly help in above functionality.

A detailed documentation on “Writing TDL Compliant Reports” can be downloaded from our
website.

Learning Outcome
An object is a self-contained entity that consists of both data and procedures to manipu-
late the data.
Objects are stored in a data base.
Tally data base is hierarchical in nature in which the objects are stored in a tree like
structure.
Everything in TDL is an Object.
Objects used for designing the User Interface are referred as interface objects.
Data is actually stored in the Data Objects. Data object are classified in two types namely
Internal objects User defined objects / TDL Objects.
A collection can be a collection of objects or a collection of collections.
Collection, the data processing artifact of TDL provides extensive capabilities to gather
data not only from Tally database but also from external sources using ODBC, DLLs and
HTTP.
In TDL, Object association can be done at following levels:
 Report Level Association
 Part Level Association
 Line Level Association
 Field Level Association
 97

TDL Reference Manaul
Each piece of information stored in data object can be retrieved using a method. Meth-
ods are classified as internal or external methods.
Union, Filtering, Sorting and Searching are the basic capabilities of collection.
Extraction, Aggregation, Usage As Tables, Integration Capabilities using HTTP XML Col-
lection, Dynamic Object Support and Collection Capabilities for Remoting are the
advanced capabilities of collection.
98

Actions in TDL
Introduction
TDL is an event driven language. Events can be triggered through a Keyboard shortcut or a
Mouse click. In an event, some predefined actions get executed. For example:

The Ctrl+A Key pressed from a voucher accepts the Entry Screen
Clicking on the F1 Button from the Gateway of Tally Menu results in the pop up of the
Company Selection Screen.

Actions are activators of a specific task with a definite result. An action always originates from a
User Interface Objects Menu, Form, Line or Field.

1. Categories of Action
Actions can be classified into two broad categories viz.,

Global Actions
Object Specific Actions

 Figure 1.1 Action Categorization
 99

TDL Reference Manual

Global Actions are not specific to any User Interface Object. For Example, Display, Create,
Execute, Alter, etc. are Global Actions. They perform the action specified irrespective of the UI
Object. Global Actions are performed on a Report or a Menu.

Object Specific Actions are actions which can act only upon specific UI Objects. For example,
Line Down is a Part Specific Action since Part owns multiple lines and an individual Line cannot
move the current focus to the subsequent line. Only Part can move the focus to the subsequent
line. Object Specific Actions are performed on relevant User Interface Objects.

TABLE 7:1 Action Categorisation

2. Action Association
Actions can be associated at various levels.

2.1 Action Association at Menu Definition
Action Association at Menu Definition is done through the Menu Item. Every Menu Item except
Quit is associated with an Action. If an Item is added without any action, then the default action
associated is to exit from the current Menu.

Syntax

[Menu: <Menu Name>]

Add : Key Item: [Position] : <Display Item> : <Unique Key> :
<Action Keyword> : <Action Parameter>

Where:
The Action Keyword can be any Global Action
The Action Parameter is decided by the Action Keyword. If the Action Keyword is Menu,
then the Action Parameter necessarily has to be a Menu Name else it has to be a Report
Name.

Global Actions Object Specific Actions
Global Actions are not specific to any
User Interface Object

These Actions are specific to any User
Interface Object

Global Actions can be originated by a
Menu, Button/ Key or a Field

Object Specific Actions can be origi-
nated by a Menu, Form, Line or a Field

Global Actions are performed on a
Report or a Menu

Object Specific Actions are performed
on relevant User Interface Objects

Example:
Create, Display, Alter, Print, Print
Report, Modify Object, Display Collec-
tion, etc.

Example:
Line Up, Line Down, Explode (Actions -
Line Object); Form Accept, Form
Reject (Actions - Form Object), etc
100

TDL Reference Manual

Example
[Menu: Commonly Used Reports]

 Add: Key Item: Trial Balance : T : Display : Trial Balance

 Add: Key Item: At Beginning : Outstandings : O : Menu : Outstandings

In the above example, a Menu Commonly Used Reports is defined with 2 Items, viz.,

1. An Item Trial Balance is added displaying default report Trial Balance. Here, the Action is
display, so the Action Value has to be a Report Name.

2. An Item Outstandings is added at the beginning to activate another Menu Outstandings.
The Action here is a Menu, so the Action Value required is a Menu Name.

2.2 Action Association at Button/Key Definition
Action Association at Button/Key definition is done using the attribute Action followed by the
Action Keyword with the parameters, if required.
Syntax

[Button: <Button Name>]

Action: Action Keyword [: Action Parameters]

Where:
The Action Keyword can be any Global or Object Specific Action
The Action Parameter is decided by the Action Keyword. If the Action Keyword is Menu,
then the Action Parameter necessarily has to be a Menu Name, else it has to be a Report
Name.

Example: Actions with Parameters

[Button: Outstandings]

Key : F5

 Action: Menu: Outstandings

[Button: Trial Balance]

Key : F6

 Action: Display: Trial Balance

Action Menu requires a Menu Name as a Parameter and Actions Create, Display, Alter, etc
requires a Report Name as a Parameter.

Example: Actions without Parameters
[Button: Printing Button]

Action: Print Report

[Button: Exporting Button]

Action: Export Report
 101

TDL Reference Manual
Action Parameters for the Actions, Print Report and Export Report is not mandatory.If the Action
Parameter is specified, then it prints the specified Report other than the Report associated with
the current object else it prints the current Report.

2.3 Action Association at Field Definition
Action Association at Field definition is done using the Action Keyword with the parameters and
the optional condition

Syntax

[Field: <Field Name>]

Action Keyword: <Action Parameters>[: Condition]

Where :
Action Keyword This can be both, Global or Object Specific Actions
<Action Parameters> can be the Value on which these Actions could be performed
Condition This is Optional. This restricts the action to perform only if the Condition returns True

Example
[Field: My Trial Balance]

Display : Group : $$IsGroup

Display : Ledger : $$IsLedger

In the example above, the Field Trial Balance has 2 statements, viz.,
1. Displaying a Group if the current object in context is a Group
2. Displaying a Ledger if the current object in context is a Ledger

3. Components of Actions
Any Action is always executed with respect to two contexts:

Originator
Executer

The Originator is one that originates the Action viz., Menu, Form, Line or Field.
For example, a Down Arrow Key pressed. The event is passed from the current Report to the
associated Form, Parts, Lines or Fields. Keys could be possibly associated either in a Menu,
Form, Line or Field. If the activated Key is found in Form, it searches further for the Line Associa-
tion, and then continues till Field. The Lowest Level Key Association gets the highest prece-
dence. If the same Key is associated at a Form as well as a Field, the Key Association at the
Field Level will get executed. In this case, the Field is the Originator.

The Executer is one on which the action is executed. For example, Form Accept Key though
attached at Field Level is a Form Action. Hence, Form is an executer of the action. In case of
execution, it searches from Report to the Field for the action to be executed. Line Down is a Part
102

TDL Reference Manual

Level Action though associated at the Form will be executed by the Part to move the current focus
to the subsequent line. Hence, Part is an executer of the Action Line Down.

TABLE 7:2 Components of Actions

4. Global Actions
As discussed above, Global Actions are Actions that are not specific to any UI Object. Global
Action provides an indication to the TDL Interpreter as to which specific task should be executed
to fulfill the user requirements. Global Actions are mainly performed on three principal definition
types namely Report, Collection and Menu. Some of the frequently used Global Actions are
discussed below:

4.1 Action — Menu
A Menu Action acts only on the Menu Definition and vice versa. The value of a Menu Action must
be a Menu Name. This Menu has to be further defined to list the Items displaying another Menu

Originator Executer
The Originator initiates the action by
associating the Key or a Button

The Executer executes the action asso-
ciated with the Key or a Button initiated
by the originator

Global Actions can be originated by a
Menu, Button/ Key or a Field whereas
Object Specific Actions can be origi-
nated by a Menu, Form, Line or a Field

Global Actions can be executed by the
one which has originated the Action.
However, Object Specific Actions can
be executed by the Objects that have
not originated the Action

The sequence followed to gather all the
Keys originating within a Report is Top
to Bottom i.e., from a Report to a Field
Definition. The lowest in the hierarchy
gets the highest precedence. For exam-
ple, if the same key is associated in
both Form as well as Field Definition,
the Key at Field Definition will be con-
sidered for execution

The sequence followed to consume the
Keys originated is from Bottom to Top
i.e., from a Field to a Report Definition.
In other words, the lowest in the hierar-
chy get the highest preference. For
example, if the same key is relevant for
both Part as well as Line Definition, the
Key will be executed in the context of
the Line Definition

Example 1
[Key: Create Ledger]
 Key : Alt + C
 Action : Create : Ledger
[Field: CST Supplier Ledger]
 Key : Create Ledger
Associating the Key with the Field, Field
is the originator as well as executer in
this case

Example 2
[Key: Part Display PgUp]
 Key : PgUp
 Action : Part PgUp
[System: Form Keys]
 Keys : Part Display PgUp
Key Part Display PgUp is originated by
Form but its executer is the Part
 103

TDL Reference Manual
or a Report. A Menu Definition continues until all the Items are used to display Reports and there
are no further Menu Actions assigned to the final Menu Items.

Example 1
;; The following code demonstrates the usage of Action Menu along with further Menu Definitions
[#Menu: Gateway of Tally]

Add : Key Item : Sample Final Accounts : F : Menu : Sample Final Accounts

[Menu: Sample Final Accounts]

;; Menu Definition to display when the above Item is activated
Add : Key Item : Trial Balance : T : Display : Trial Balance

Add : Key Item : Profit & Loss : P : Display : Profit and Loss

Add : Key Item : Balance Sheet : B : Display : Balance Sheet

In the example mentioned above:
The Default Menu Gateway of Tally is altered to add a new Item Sample Item with Menu
action displaying the Sample Final Accounts Sub Menu.
The Sub Menu Sample Final Accounts is defined to display all the components of Final
Accounts i.e.,
 Trial Balance
 Profit & Loss
 Balance Sheet

All the Items here, use the Display Action. Hence, no further Menu Definition is required.

As seen in the previous Topic Objects, Methods and Collections, Display Action takes
the Report Name as its parameter and is used to display the Reports as is defined.

Example 2
;; The following code demonstrates the usage of Menu and Display Actions and also the
;; the relevance of their association in Menu and Reports (through Form)

[Button: Final Accounts]

;; Button Definition to activate a Menu
Key : F5

Action : Menu: Sample Final Accounts

/* Since the above Button activates a Menu, it can be acted only upon a Menu
 It cannot be associated to a Report */
[#Menu: Gateway of Tally]

Buttons : Final Accounts;; attaching a Button to the Menu
104

TDL Reference Manual

[#Form: Group Summary]

Buttons : Final Accounts

;; Above is an incorrect association as Buttons triggering Menu Action cannot
;; be attached to a Form.

[Button: Balance Sheet]

;; Button Definition to Display a Report
Key : F6

Action : Display: Balance Sheet

/* Since the above Button activates a Report, it can be associated both to a Menu as well as a Report */

[#Form: Group Summary]

Button : Balance Sheet;; attaching a Button to the Report

[#Menu: Display Menu]

Button : Balance Sheet;; attaching a Button to the Menu

In the Example mentioned above:
A new Button Final Accounts is added to activate a Menu Sample Final Accounts which
is attached to the default Menu Gateway of Tally.
The Button Final Accounts cannot be attached to a Report since a Menu cannot be
acted upon in a Report. In the above example, the Button Final Accounts is attached to
the Form Group Summary which is incorrect since the Menu cannot be called from a
Report.
Another Button Balance Sheet is added to display a Report Balance Sheet which is
enabled in all the Reports using the Form Group Summary and also in the Menu Dis-
play Menu.
The Button Balance Sheet can be attached both to a Report as well as to a Menu since
the Report can be acted upon by a Report as well as a Menu.

4.2 Action – Create and Alter
Create and Alter Action acts only upon the Report Definition. These actions activate the Report in
Create or Alter Mode. In other words, the Report is started in the Edit Mode. In case of Create
Action, the user enters the Report in order to add values whereas in case of Alter, the user enters
the Report to modify the already created values.
These actions help the user to key in the relevant values. The values thus entered may or may
not be stored. The treatment of values depend on the need. The values thus entered in the
Report by the user if required to be retained can be stored as a part of Tally Database or Config-
uration File.

As discussed in the Topic on Variables, all the persistent variable values can be stored in
a Configuration File Tallysav.TSF for subsequent sessions.
The values entered in the Report can also be stored as a part of the Tally Database
 105

TDL Reference Manual
To store the values as a part of Tally Database, the Report must be associated to a Data Object.
For example, Group, Ledger, Voucher, etc. are some of the Data Objects available in Tally.
For instance, in order to design an interface to create a Ledger:

The Object Ledger must be associated to the Report using Report Attribute Object
Values entered by the user in the Fields within the Report must be stored in relevant
Methods using Field Attribute, Storage

Example
/* The following code demonstrates the usage of Action Create and Attribute Storage at Field. Definition to
store the values entered within the relevant Object associated at Report Level*/

[#Menu: Gateway of Tally]

Add : Key Item: Ledger Creation: L : Create: Create Ledger

[Report: Create Ledger]

Form : Create Ledger

Object : Ledger

;; Object Association done at Report Level

[Form: Create Ledger]

Parts : Create Ledger

[Part: Create Ledger]

Lines : Store LedgerName, Store LedgerGroup

[Line: Store LedgerName]

Fields: Short Prompt, Name Field

Local : Field: Short Prompt: Info: "Name :"

Local : Field: Name Field: Storage: Name

/* Storing the value entered by user in an Internal Method Name available within the Object
 associated at the Report Level*/

[Line: Store LedgerGroup]

Fields : Short Prompt, Name Field Local: Field:+

Short Prompt: Info: "Under :"

Local : Field : Name Field: Storage: Parent

Local : Field : Name Field: Table: Group
106

TDL Reference Manual

/* Similarly, Parent Method is stored with the user entered value which is considered as the
Group of the Ledger created. Also Group is a default Table/ Collection to display all the default as well as
user defined Groups. Field Attribute Table helps to restrict the user input to a predefined list*/.
In the example mentioned above:

The Default Menu, Gateway of Tally have been altered to add a new Item Ledger Crea-
tion which allows the user to create a Ledger
Report Create Ledger associates the Object Ledger to it which indicates that the Report
is meant for creating an instance of the Object Ledger.
The Name and Group of the Ledger are stored in the Internal Methods Name and Parent
which stores.

Example
;; The following code demonstrates the usage of Alter Action at Button
[Button: My Reco Button]

 ;; Button meant to do Bank Reconciliation
Key : Alt + F5

Action : Alter: Bank Recon

;; Alter Action to trigger Bank Recon Report in Alter Mode
Title : “Reconcile”

[Form: My Bank Vouchers]

 Button : My Reco Button

 ;; Associating the Button to the Report

In the example mentioned above:
The Button My Reco Button is defined with an alter action to alter the Report Bank
Recon on pressing the Alt + F5 Key. This button is used for entering dates in the Bank
Reconciliation Report.
The Button My Reco Button is associated to the Form My Bank Vouchers

Example
;; The following code demonstrates the usage of Alter Action at Field

[#Menu: Gateway of Tally]

Add : Key Item: Ledger Display : L : Display: My Ledger

[Report: My Ledger]

Form : My Ledger

[Form: My Ledger]

Parts : My Ledger
 107

TDL Reference Manual
Height : 100% Page

Width : 100% Page

[Part: My Ledger]

Lines : My Ledger

Repeat : My Ledger: Ledger

;; Ledger is a default collection of Ledger Object
Scroll : Vertical

[Line: My Ledger]

Fields: My Ledger

Key : Line Object Enter Alter, Line Click Object Enter Alter

;;The above default Keys act upon Line Definition and the action Alter Object is associated with the Keys
provided the current Report is in Display Mode

[Field: My Ledger]

Set As : $Name

Variable : Ledger Name

;;Variable Ledger Name retains the Ledger selected by the user for the subsequent report
Alter: Create Ledger

;; Alter Action is used to activate the Report in Alter Mode
;; Create Ledger is user defined Report defined while Ledger Creation

In the example mentioned above:
Two default Keys associated to a Line Definition that allows allows a selection of any of
the lines is being to be repeated.
Action associated with these Keys is Alter Object which means on hitting the Key, the
Object associated with the current Line must be altered.
Mode: Display is specified in these Keys signifies that the current report must be in Dis-
play Mode.
Alter Action used at the Field definition prompts the report from being activated on the
current field which must be in Alter Mode.

4.3 Action — Modify Object
The Action Modify Object alters the methods of an Object at any level in the Object Hierarchy.
Modify Object action supports modifying multiple values of an Object by a comma separated by
the specification of Method: Value pair.
Syntax

Action : Modify Object : <PrimaryObjectSpec>.<SubObjectPathSpec>.
MethodName : Value>[,Method Name: <Value> , …]
[,<SubObjectPathSpec>.MethodName :<Value>, …..]
108

TDL Reference Manual

The specifications given for <PrimaryObjectSpec>, <SubObjectPathSpec>, MethodName remain
the same as described in the New Method syntax section in the topic Objects and Collection.
A single Modify Object Action cannot modify methods of multiple primary Objects, but can modify
multiple values of an Object.
Modify Object is allowed to have Primary Object Specification only once i.e., for the first value.
Further values permissible are optional in the Sub Object and Method Specification only.

From the second value onwards, the Sub Object specification is optional. If the Sub Object Speci-
fication is specified, the context is assumed to be the Primary Object specified for the first value.
In absence of the Sub Object Specification, the previous value specification's Leaf Object is con-
sidered as the context.

Example 1
[Key: Alter My Object]

 Key : Ctrl + Z

 Action : Modify Object : (Ledger,"MyLedger").BillAllocations+

 [First, $Name="MyBill"].OpeningBalance : 100,+

 ..Address[Last].Address : "Bangalore"

The existing ledger My Ledger is being altered with new values for the Opening Balance for the
existing bill and Address. The key Alter My Object can be attached to any Menu or Form.

Example 2
[Key: Alter My Object]

 Key : Ctrl + Z

 Action : Modify Object :(Ledger,"MyLedger").BillAllocations[1] +

 .OpeningBalance :1000,Name: ”My New Bill”,..Address[First]+

 .Address :"Hongasandra Bangalore" , Opening Balance:5000

The existing ledger My Ledger is being altered with new values for the Opening Balance appli-
cable on the existing bill, Opening Balance of the ledger and the first line of the Address. The
key Alter My Object can be attached to any Menu or Form.

A button bearing the action Modify Object if associated at Menu Definition requires a primary
object specification as Menu, which is not in context of any Data Object.

Example
[#Menu : Gateway of Tally]

Add : Button : Alter My Object
 109

TDL Reference Manual
The following points should be considered while associating a key with the action Modify Object:
Since the Menu does not have any Info Objects in context, specifying Primary Object
becomes mandatory.
Since the Menu cannot work on scopes like Selected, Unselected, etc. the scopes spec-
ified are ignored.
Any formula specified in the value and is evaluated assumes the Menu Object as the
requestor.
Even Method values pertaining to Company Objects can be modified.
A button can be added in the Menu to specify the action Modify Object at the Menu level.

4.4 Action – Browse URL
The Action, Browse URL is used to provide a link to any web browser with an URL formula
passed as a parameter.

Syntax

Action: Browse URL: <URL Formula>

Example: Field acting as a hyperlink

[Key : Execute Hyperlink]

 Key : Left Click

 Action : Browse URL: “www.tallysolutions.com”

[Field: Hyperlink Company]

 Color : Blue

 Border : Thin Bottom

 Key : Execute Hyperlink

 Set as : "Tally Solutions Pvt. Ltd"

 Local : Key : Execute Hyperlink : Action : Browse URL: +
 http://www.tally.co.in

5. Actions — Create Collection, Display Collection and Alter Collection
5.1 Action — Create Collection
A Menu Item can be used to create Objects in a Collection with the action Create Collection. This
action is generally used for creation of Masters such as Groups, Ledgers, Stock Items, Voucher
Types, etc. Create Collection fetches a report through the defined Collection. A report displayed
through this action, is done in Create mode.
110

TDL Reference Manual

Example
;; The following code demonstrates the usage of Create Collection Action

[#Menu: Gateway of Tally]

Add : Key Item: Ledger: L : Create Collection: Ledger

;; where a Ledger is a predefined Collection in DefTDL
One can also use the action Create in place of Create Collection, to create Objects in a collection.
The only difference is that Create explicitly calls a Report and Create Collection requires a collec-
tion. Create Collection executes the same report through the defined Collection.

5.2 Action – Display Collection
A Menu Item or a Button can be used to display a popup of Object names in a Collection, which in
turn, can trigger a Report. On choosing an Object from the popup, a report in display mode is
triggered by the action, Display Collection. This action can be used for displaying the Masters or
Reports pertaining to Groups, Ledgers, Stock Items, etc.

Example
;; The following code demonstrates the usage of Display Collection Action

[#Menu: Gateway of Tally]

Add : Key Item: Ledger : L : Display Collection : Ledger

;; where Ledger is a predefined Collection in DefTDL

Though the Action name is Display Collection, Display is meant for the subsequent Report, which
will be displayed on selection of an Object. Here, the Report is in display mode.

5.3 Action – Alter Collection
The Action, Alter Collection is similar to Display Collection, but it triggers the Report in Alter mode.
This Action is generally used to alter the Masters such as Groups, Ledgers, Stock Items, Voucher
Types, etc.

Example
;; The following code demonstrates the usage of Alter Collection Action

[#Menu: Gateway of Tally]

Add : Key Item: Ledger: L : Alter Collection : Ledger

;; where Ledger is a predefined Collection in DefTDL

Though the Action is Alter Collection, Alter is meant for the subsequent Report which will be
displayed on the selection of an Object.
 111

TDL Reference Manual
Display Collection, Create Collection and Alter Collection routes the final report through a Collec-
tion. Let us understand, some critical Attributes require to achieve these actions.

5.4 Collection Attributes
The Collection attributes Trigger, Variable and Report, support the actions Create Collection,
Display Collection and Alter Collection respectively.

[Collection: My Ledger]

Type : Ledger

Trigger : LedList Select

Report : Selected Ledger Display

Variable : Ledger Name

5.4.1 Trigger
The Collection attribute, Trigger is used to popup the Object names from a Collection. For
example, a List of Items pop up when you choose the default Menu Item Stock Item.

Syntax

[Collection: <Collection Name>]

Trigger: <Report Name>

The Report Name is the Interface used to display the Object names in a Collection.

5.4.2 Report
The Collection Attribute, Report displays a Report based on the Object selected. For example,
Item Monthly Summary is a default Report being displayed when you choose a particular stock
item.
Syntax

[Collection: <Collection Name>]

Report: <Report Name>

The Report Name is the final report displayed, when an Object is selected from the Collection.

5.4.3 Variable
The Collection Attribute, Variable stores the name of the selected Object. This attribute is used
with actions, Display Collection and Alter Collection.

Syntax

[Collection: <Collection Name>]

Variable: <Variable Name>
112

TDL Reference Manual

The Variable Name is the variable which stores the Object name for the subsequent Report which
is to be displayed.

Example
[Collection: Stock Items in Display Collection]

Type : Stock Item

Trigger : Stock Item Selection Interface

Report : Stock Item Final Report

Variable : Stock Item Name

6. Object Specific Actions
Some of the Object Specific Actions are discussed below:

6.1 Menu Actions – Menu Up, Menu Down, Menu Reject
Menu Actions - Menu Up, Menu Down, Menu Reject, etc. are acted upon on the Menu. These
keys are associated to all the Menus (Default TDL codes as well as User Defined TDL codes)
through the declaration [System: Menu Keys]

Example
[Key: Menu Up]

Key : Up

Action : Menu Up

[Key: Menu Down]

Key : Down

Action : Menu Down

[Key: Menu Reject]

Key : Esc

Action : Menu Reject

[System: Menu Keys]

Key : Menu Down, Menu Up, Menu Reject

The declaration [System: Menu Keys] declares a list of Keys that are commonly required for any
Menu. Since all the common menu operations like Scroll Up, Scroll Down, Drill down, etc. are
declared here; a new Menu added, does not require these keys to be associated since they are
inherited from the above declaration.
 113

TDL Reference Manual
6.2 Form Actions – Form Accept, Form Reject, Form End
Form Actions; Form Accept, Form Reject, Form End, etc. are acted upon Form. These keys are
associated to all the Forms (Default TDL codes as well as User Defined TDL codes) through the
declaration [System: Form Keys]

Action Form Accept saves the current Form.
Action Form Reject rejects the current Form i.e., the current form is quit without saving.

Example
[Key: Form Accept]

Key : Ctrl + A

Action : Form Accept

Mode : Edit

[Key: Form Display Reject]

Key : Esc

Action : Form Reject

Mode : Display

[Key: Form End]

Key : Ctrl + End

Action : Form End

[System: Form Keys]

Key : Form Accept, Form Display Reject, Form End

The declaration [System: Form Keys] declares a list of Keys that are commonly required for any
Report. Since all the common Form operations like Save Form, Reject Form, Form End, etc. are
declared here; a new Form added does not require these keys to be associated since they are
inherited from the above declaration.

6.3 Part Actions – Part Home, Part End, Part Pg Up
Part Actions; Part Home, Part End, Part Pg Up, etc. are acted upon Part. These keys are associ-
ated with all the Forms (Default TDL codes as well as User Defined TDL codes) through the dec-
laration [System: Form Keys]

Action Part Home positions the cursor to the beginning of the current Part
Action Part End positions the cursor to the end of the current Part
Action Part PgUp is used to quickly scroll the page to view the previous page
114

TDL Reference Manual

Example
[Key: Part Display Home]

Key : Home

Action : Part Home

Mode : Display

[Key: Part Display End]

Key : End

Action : Part End

Mode : Display

[Key: Part Display PgUp]

Key : PgUp

Action : Part PgUp

Mode : Display

[System: Form Keys]

Key : Part Display Home, Part Display End, Part Display PgUp

The declaration [System: Form Keys] declares a list of Keys that are commonly required for any
Part. Since all the common Part operations like Part Home, Part End, Part PgUp, etc. are
declared here; a new Part added does not require these keys to be associated since they are
inherited from the above declaration.

6.4 Line Actions – Explode, Display Object, Alter Object
Line Actions: Explode, Display Object, Alter Object, etc. are acted upon Line.

Action Explode explodes a line further to display all the explode details specified in the
Line Attribute Explode.
Action Display Object is used to display the Object in context of the current line.
Action Alter Object is used to alter the Object in context of the current line.

Example
[Key : Line Explode]

Key : Shift + Enter

Action : Explode

[Key : Line Object Display]

Key : Enter

Action : Display Object

Mode : Display
 115

TDL Reference Manual
[Key: Line Object Alter]

Key : Ctrl + Enter

Action : Alter Object

Mode : Display

[System: Form Keys]

Key : Line Explode

Key : Line Object Display, Line Object Alter

The declaration [System: Form Keys] declares a list of Keys that are commonly required for any
Line. Since all the common Line operations like Explode, Display Object, Alter Object, etc. are
declared here; a new Line added does not require these keys to be associated since they are
inherited from the above declaration.

6.5 Field Actions – Field Copy, Field Paste, Field Erase, Calculator
Field Actions: Field Copy, Field Paste, Field Erase, Calculator, etc. are acted on Fields.

The Action Field Copy, copies the current field (Field where the cursor is positioned) con-
tents in the OS clipboard which will be available later.
The Action Field Paste, pastes the clipboard contents to the current Field.
The Action Field Erase, is used to erase the contents of the current Field at a stretch
without hitting the Backspace or Delete Key.
The Action Calculator is used in case of Fields that require some computation, the result
of which should be returned to the Field. Fields which take Amounts or Numbers as their
value require this action.

Example
[Key : Field Copy]

Key : Ctrl + Alt + C

Action : Field Copy

[Key : Field Paste]

Key : Ctrl + Alt + V

Action : Field Paste

[Key: Field Erase]

Key : Esc

Action : Field Erase

Mode : Edit
116

TDL Reference Manual

[Key: Calculator]

Key : Alt + C

Action : Calculator

Mode : Edit

[Field : NumDecimals Field]

 Key : Calculator

[System: Form Keys]

Key : Field Erase

Key : Field Copy, Field Paste

The declaration [System: Form Keys] declares a list of Keys that are commonly required for any
Field. Since all the common Field operations like Field Copy, Field Paste, Field Erase, etc. are
declared here; a new Field added does not require these keys to be associated since they are
inherited from the above declaration. The Action Calculator is not required for all the Fields hence
it has not been declared in Form Keys usage List. The Action Calculator has been associated to
Fields where it is required. In the above example, NumDecimals Field is a numeric field which
may require calculations. Therefore, the Calculator Key associating the Action Calculator is
attached to the Field.

Learning Outcome
Actions are activators of a specific task with a definite result. An Action always originates
from a User Interface (UI) Objects Menu, Form, Line or Field.
Global Actions and Object Specific Actions are the different types of actions used in TDL.
Actions can be associated at various levels:
 Action Association at Menu Definition
 Action Association at Button/Key Definition
 Action Association at Field Definition

An Action is always executed with respect to two contexts:
 Originator
 Executer

Some of the frequently used Global Actions are:
 Menu
 Modify object
 Browse URL
 Create and Alter

Some of the Object Specific Actions are:
 Menu Actions - Menu Up, Menu Down, Menu Reject
 Form Actions – Form Accept, Form Reject, Form End
 117

TDL Reference Manual
 Part Actions – Part Home, Part End, Part Pg Up
 Line Actions – Explode, Display Object, Alter Object
 Field Actions – Field Copy, Field Paste, Field Erase, Calculator
118

User Defined Fields
Introduction
In Tally.ERP 9 the structure of an object, the data type and storages that are required in order to
store the data are all pre-defined by the platform. All the data is stored in the Tally data base. By
default, the data is always stored in the pre-defined storages only.

There may be instances when additional information needs to be stored in the existing objects.
This need has given rise to the concept of User Defined Fields (UDF). A UDF is used to store the
additional information which is part of the Tally database. In other words, UDFs store additional
information in the existing objects.

1. What is UDF?
User Defined Fields have a storage component defined by the user. User Defined Fields are
stored in the context of current object. It can be of any Tally data type such as String, Amount,
Quantity, Rate, Number, Date, Rate of Exchange and Logical.

Defining UDFs does not serve the purpose unless it is associated with one or more internal
object. When a UDF is created and used in an already existing report, the data is stored in the
context of object, it is always attached to the object to which this report is associated i.e. the
object in context.

1.1 Creating a UDF
Syntax

[System: UDF]

<Name of UDF>: <Data Type>: <Index Number>

UDFs should be defined under the section [System: UDF].
<Name of UDF> Identifies the UDF and ideally it should describe the purpose for which it is
created.
<Data Type> This deals with any of the Tally data type and Aggregate.
<Index Number> It can be any number between 1 and 65536.
 119

TDL Reference Manual
The number falling between 1 to 9999 and 20001 to 65536 are opened for customisation and
10000 to 20000 is allotted for Common development in TSPL. The user can create 65536 UDFs
of each data type.

Example
[System: UDF]

MyUDF 1 : String : 20003

MyUDF 2 : Date : 20003

The advantage of a UDF in Tally is that they automatically get attached to the current object.
There is no specific declaration which is required for the object association when the UDF is
defined with the system definition.

1.2 To store the User Input in the UDF
The attribute Storage of the field definition is used to store the value entered in a field. The value
is stored in the context of current object. The syntax of a Storage attribute is as follows:

Syntax

Storage : <Default Storage / Name of UDF>

<Name of UDF> It identifies the UDF and ideally describes the purpose for which it is created.

Example
[Field: NewField]

Use : NameField

Storage : MyUDF

1.3 To retrieve the value of UDF from an Object
In the context of the current object, the value of a UDF can be accessed by prefixing the $ to the
UDF name.
Syntax

$<Name of UDF>

The index numbers 1 to 29 is already used for default TDL.
120

TDL Reference Manual

Example:
[Field: NewField]

Use : NameField

Set As : $MyUDF

2. Classification of UDF’s
UDFs are classified into two types, which are as follows:

Simple UDF
Complex/Compound/Aggregate UDF

2.1 Simple UDF
A Simple UDF can store one or more values of single data type only. When a UDF is used for
storage, it stores the value in the context of object associated at Line or Report Level, by default .
Only one value is stored in this case.

2.1.1 UDF to store a single value
The following example code snippet demonstrates the usage of UDF to store a single value.

Example
[Report: CompanyVehicles]

Object : Company

 .
 .
 .

[Field: CVeh]

Use : Name Field

Storage : Vehicle

Unique : Yes

[System : UDF]

Vehicle : String : 700

The object is associated at the Report Level. The value stored in a UDF is in the context of a
Company Object in this case. The UDF vehicle stores a single string value .

2.1.2 UDF to store multiple values
When multiple values of the same data type are to be stored, then the Repeat attribute of Part is
used. The field of the line uses the same UDF name in the Storage attribute. The syntax of the
Repeat attribute of Part in this case will be as follows:
 121

TDL Reference Manual
Syntax

 Repeat : <Line name > : < Name of UDF >

<Line Name > Name of the line to be repeated.
<Name of UDF> It identifies the name of the UDF to store multiple values
The example explained in the section “UDF to store single value” can be modified to store multiple
values of string type.

Example
[Part: CompVeh]

Line : CompVeh

Repeat : CompVeh : Vehicle

Break On : $$IsEmpty:$Vehicle

Scroll : Vertical

In this scenario, multiple values of type string can be stored under the object Company.

2.1.3 Creating collection of Values Stored in UDF
Multiple values stored in a UDF can be displayed as Table in a field. A collection has to be defined
as shown :
Syntax

[Collection : <Collection Name>]

Type : <UDF Name> : <Object Name>

Format : $<UDF Name>, 20

Example
[Collection: CMP Vehicles]

Type : Vehicle : Company

Childof : ##SVCurrentCompany

Format : $Vehicle, 20

Title : "Company Vehicles"

The above code snippet creates a collection of values stored in the UDF of current Company
object. Once the collection is defined it can be used in the Table attribute of field definition. So
when the cursor is in the defined field, the values stored in the UDF will be displayed as a popup
table.
Consider the following example:

[Field: EI Vehicles Det]

Use : Short Name Field

Table : CMP Vehicles, Not Applicable

Show Table : Always
122

TDL Reference Manual

A popup table is displayed when the cursor is placed in the field ‘EI Vehicles Det’. The Table
contains values stored in the UDF which are Not Applicable as a list.

2.2 Aggregate UDF
A Simple UDF can only store values of a single data type so when multiple values of different data
types are required to store as one entity, then in such cases an Aggregate UDF can be used.

Aggregate UDFs are very useful for storing multiple values and repeated values. An aggregate
UDF is a combination of different types of UDFs. Aggregate UDFs can be used to store user data
in a tabular format attached to any internal object and can be used as a collection of UDFs.

In other words, an Aggregate UDF comprises of a set of fields repeating itself more than once.
The output can be stated in the form of a record consisting of fields of different types and sizes.
When a line is repeated over an Aggregate UDF, it associates all its storage components (same
or different data types) as a single unit.

2.2.1 Creating an Aggregate UDF
To create an Aggregate UDF the, the data aggregate is used while defining the UDF. The compo-
nents are defined as simple UDFs.

Syntax

[System: UDF]

<Name of UDF>: Aggregate : <Index Number>

Example
A Company wants to create and store multiple details of company vehicles.The details required
are: Vehicle Number, Brand, Year of Mfg., Purchase Cost, Type of Vehicle, Currently in Service,
Sold On date and Sold for Amount.

[System : UDF]

Company Vehicles : Aggregate : 1000

VVehicle Number : String : 1000

VBrand : String : 1001

VYear of Mfg : Number : 1000

VPurchase Cost : Amount : 1000

VType of Vehicle : String : 1002

VCurrently in Service : Logical : 1000

VSold On date : Date : 1000

VSold for : Amount : 1001

To store the required details simple UDFs are defined and to store then them as one entity, one
UDF of the type Aggregate is defined as shown in the example.
 123

TDL Reference Manual
2.2.2 Using an Aggregate UDF
An Aggregate UDF defined does not associate each component field with it. The association will
takes place only when you repeat a Line over an Aggregate UDF and within that Line you have
fields which stores the value into the component UDFs.

Syntax

Repeat : <Line name > : < Name of Aggregate UDF >

<Name of Aggregate UDF> This is the name of UDF defined with Aggregate data type.

Example
[Part : Comp Vehicle]

Line : Comp VehLn

Repeat : Comp VehLn : Company Vehicles

BreakOn : $$IsEmpty:$VBrand

 .
 .
 .

[Field : CMP VBrand]

Use : Short Name Field

Storage : VBrand

The Line is repeated over the Aggregate UDF and the Simple UDFs are entered in the fields.

2.2.3 Using Aggregate UDF in a Sub-Form
A Subform is an attribute that is used with a Field definition. It relates to a report (not Form) and
can be invoked by a field. This attribute is useful to activate a report within a report, perform the
necessary action and return to the report used to invoke the Subform. There is no limit on the
number of Subforms that can be used at the field level.

Syntax

[Field: Field Name]

Sub Form : <Report Name> : <Condition>

Where:
<Report Name> This is the name of the Report to be displayed.
<Condition> This could be any expression, which evaluates to a logical value. The report will be
displayed only when the condition is true.

A Sub Form is not associated to the Object at the Report level. An Object associated to the Field
in which the Sub Form is defined, gets associated to the Sub Form. A Sub Form will inherit the
info object from the Field which appears as a pop-up.
124

TDL Reference Manual

The Bill-wise Details is an example of a Subform attribute. This screen is displayed as soon as an
amount is entered for a ledger whose Bill-wise Details feature has been activated.

Example
The following code snippet uses a Subform to enter the details of bills when the Bill Collection
ledger is selected while entering a Voucher. The values entered in the Subform are stored in an
Aggregate UDF. This UDF is attached to the object to which the field displaying the Subform is
associated. Here, it is the Object of a Ledger Entries Collection.
The following code is used to associate a Subform to the default Field in a voucher.
[#Field: ACLSLed]

Sub Form : BillDetail : ##SVVoucherType = "Receipt" +

 and $LedgerName = "Bill Collection"

The Name Report for the Subform uses an Aggregate UDF to store the data. A Line is repeated
over the Aggregate UDF at the Part level.
[Part : BillDetails]

Scroll : vertical

Line : BillDetailsH, BillDetailsD

Repeat : BillDetailsD : BAggre

Break After : $$Line=2

The Attibute Storage is used for all the fields.

[Field : CustName1]

Use : Name Field

Storage : CustName

The UDF is defined as follows:

[System : UDF]

CustName : String : 1000

BillNo : String : 1001

BillAmt : Amount : 1001

FPrint1 : String : 1002

BAggre : Aggregate : 1000
 125

TDL Reference Manual
Learning Outcome
User Defined Fields are stored in the context of the current Object. These Fields can be
of any Tally data type.
UDFs should be defined under the section [System: UDF].
The attribute Storage in a Field definition is used to store the value entered in a Field.
The value is stored in the context of a current Object.
A Simple UDF can store one or more values of a single data type only.
Aggregate UDFs are very useful for storing multiple values and repeated values.
126

Reports, Printing and Validation Controls
Introduction
In the previous lesson, the significance and usage of the User Defined Fields was explained. The
classification and creation of UDF’s was also discussed. This lesson is dedicated to Report
creation and printing. The types of reports and the different ways of printing them will be explained
in detail.

1. Reports
In Tally.ERP 9 the financial statements are generated as Reports based on the vouchers entered
till date. The Balance Sheet, Profit & Loss A/c, Trial Balance etc are the some of the Reports
which Tally.ERP 9 has by default.

Normally a business requires Reports in any of the following formats:
Tabular Report: A Report with fixed number columns which can be configured
Hierarchical Report : A Report designed in successive levels or layers
Columnar Report : A Report with multiple columns

Tally.ERP 9 caters to generating all the types of Reports mentioned above.

1.1 Tabular Reports
A Tabular Report has the simplest format of all the Report formats. A typical Tabular Report will
have following components:

Report Title : It contains the Name of the Report, the Title for each column, the Day/
Period for which a Report is generated, etc
Report Details : It contains the actual information
Report Total: It contains the Total of the respective columns

In a typical Tabular Report, the number of columns is fixed and is interactive i.e. an end user can
change the appearance of the Report. The Day Book, Stock Summary, Trial Balance, Group
Summary are the some of the default Tabular Reports in Tally.ERP 9.
 127

TDL Reference Manual
The Tabular Report, Stock Summary is shown in Figure 9.1

 Figure 1.1 Stock Summary

1.1.1 Designing a Tabular Report
A typical Tabular Report will have a Title Line, Details Line and an optional Total Line. The Details
Line will be repeated over the objects of a Collection.

A Tabular Report can be made Interactive by adding the following features.

Adding Buttons to change the period, to change the contents of the Report, etc (As dis-
cussed in the lesson 5: Variables, Buttons, Keys)
Adding explosions to the lines

1.1.2 Displaying the Exploded Part
Tally.ERP 9 allows the user to display additional information about the current line object when the
key combination SHIFT + Enter is pressed. This functionality is referred to as an explosion in
Tally.ERP 9. The attribute Explode and Indent of Line definition, and the $$KeyExplode function is
used.

The attribute Explode
The attribute ‘Explode’ refers to an attribute of the line, which is used to take the current data from
the Line Object. A Part is displayed after the process of explosion is complete.
128

TDL Reference Manual

Syntax

Explode : <Part Name> : <Logical Condition>

<Part Name> This is the name of the Part which displays the additional information about the
Line object.
<Condition> If the Condition is True, then it will result in an explosion.

The Function of $$KeyExplode
$$KeyExplode function gives the current status of the keys Shift and Enter. This is used as a
condition to check if the user has pressed the Shift+Enter Keys.

Example 1: Simple Tabular Report
Let us consider writing a simple Trial Balance.

[Part: My TB Part]

Lines : My TB Title, My TB Details

Repeat : My TB Details: My TB Groups

Scroll : Vertical

 Figure 1.2 Simple Trial Balance Report
 129

TDL Reference Manual
Example 2 : A Simple Interactive Tabular Report
A report showing all the Primary groups can be created and exploded by pressing Shift + Enter to
view the sub groups. The ledgers can subsequently be viewed on the same screen with an indent
for each level.

The report is as shown in Figure 9.3

 Figure 1.3 Simple Interactive Tabular Report

The following code snippet displays the exploded part :

[Line: My TB Details]

Fields : My TB Name Field, My TB ParName Field

Right Fields: My TB Dr Amt Field, My TB Cr Amt Field

Explode : My TB Group Explosion : $$IsGroup and $$KeyExplode

[Field: My TB Name Field]

Use : Name Field

Set as : $Name

Variable : MyGroupName1
130

TDL Reference Manual

The code for the exploded part is as shown below:

[Part: My TB Group Explosion]

Lines : My TB Details Explosion

Repeat : My TB Details Explosion : My TB GroupsLedgers

Scroll : Vertical

[Line: My TB Details Explosion]

Fields : My TB Name Field, My TB ParName Field

Right Fields: My TB Dr Amt Field, My TB Cr Amt Field

Explode : My TB Group Explosion : $$IsGroup and $$KeyExplode

Indent : 2 * $$ExplodeLevel

Local : Field : Default : Delete: Border

In the code snippet, the Collection My TB GroupLedgers is a union of collections of the Type
Group and Ledgers respectively.

[Collection: My TB GroupsLedgers]

Collection : My TB Groups, My TB Ledgers

The variable MygroupName1 is used in the attribute Child Of under the collections My TB
Groups and My TB Ledgers.

[Collection: My TB Groups]

Type : Group

Child Of : #MyGroupName1

[Collection: My TB Ledgers]

Type : Ledger

Child Of : #MyGroupName1

When the user presses the Shift + Enter keys, then the exploded part shows the Sub-groups
under the group in the current line as shown in Figure 9.4.
 131

TDL Reference Manual
 Figure 1.4 Interactive Tabular Report

When the keys Shift + Enter are pressed by the user, one more exploded part shows the Ledgers
under the current Sub-group as shown in Figure 9.5.
132

TDL Reference Manual

 Figure 1.5 Interactive Tabular Reports - Sub Groups

1.2 Hierarchical Report (Drill down Report)
A Tally application provides a simple way of navigating from one report to another which is
commonly referred to as a drill down. A Drill Down facility moves from one report to the other to
give a detailed view based on the selection in the current report. A user can return to the first
Report from the detailed view. A typical drill down in Tally.ERP 9 starts from the Report and
reaches the Voucher Alteration screen.

1.2.1 Designing Hierarchical Reports
A Hierarchical Report can be designed by incorporating the following changes to a Tabular
Report.

Variable attribute of Report definition
Child Of attribute of Collection definition
Display and Variable attributes of Field definitions
Variable Definition
 133

TDL Reference Manual
Example
The following code snippet demonstrates the Drill down action, which is based on the Group
Name displayed in the field. The Drill down action is achieved by specifying the two attributes
Variable and Display at the field level.

[Field: MyTB Name]

Width : 120 mms

Set as : $Name

Variable: GroupVar

Display : My Trial Balance : $$IsGroup

A Variable is defined as a Volatile and is associated at Report. The attribute Variable of Report
definition is used to associate the Variable with the report.

[Variable: Group Var]

Type : String

Default : ""

Volatile : Yes

[Report: My Trial Balance]

Form : My Trial Balance

Variable : GroupVar

The same Variable is used in the Childof attribute of the Collection definition. When a line is
repeated over this collection in the report when the user presses the Enter key the Report being
displayed will have the objects whose Parent Name is stored in the variable.

[Collection: My Collection]

Type : Group

Childof : ## GroupVar

The following screen is displayed when the user selects the option from the Menu:
134

TDL Reference Manual

 Figure 1.6 Trial Balance Report

When the key Enter is pressed by the user, the next screen displays the Sub Groups of the
current Group as shown in Figure 9.7.

 Figure 1.7 Trial Balance - Sub group
 135

TDL Reference Manual
1.3 Column Based Reports
The reports in which the number of columns added or deleted as per the user inputs are referred
to as column based reports. There are four types of column based reports in Tally, namely Multi-
Column Reports, Auto-Column Reports and Automatic Auto-Column Reports, Columnar Report.
All these types are explained with examples in this section.

1.3.1 Multi-Column Reports
A Multi column Report is a report in which a column is repeated based on the criteria specified by
user. Trial Balance, Balance Sheet, Stock Summary etc are the some of the default Reports in
Tally.ERP 9 which has a Multi column feature. Normally this feature is used to compare the values
across different periods.

1.3.2 Designing a Multi Column Report
In a Tabular Report Lines are repeated over a collection. But in a multi column Report, columns
are repeated in addition to the repetition of the Lines over a Collection. Based on the user input
columns are repeated. The column Report is used to capture the user inputs like Period,
Company Name, Stock Valuation etc on which column is generated.

Following attributes are used at different components of a Report to incorporate the multi column
feature.

The attribute Column Report
In TDL the attribute Column Report of the Report definition, facilitates the creation of multicolumn
reports.
Syntax

ColumnReport: Report Name

The Report Name specified with this attribute is used to obtain the user input from the options dis-
played.

The attribute Repeat
The attribute Column Report is associated with a variable. The variable is specified in the Repeat
attribute of Report definition. Both attributes must be specified in the Report definition to create a
multi-column report.
Syntax

Repeat: Variable

These two attributes automatically generates and displays three buttons on the Button Bar,
namely “New Column”, “Alter Column” and “Delete Column” for further user interaction.
136

TDL Reference Manual

Example: Incorporating Multi Column Feature to Trial Balance report
Step 1 : Using Column Report & Repeat attribute at the Report

By using the Column Report & Repeat attribute at the Report, “New Column”, “Alter Column” and
“Delete Column” buttons will be automatically added to ‘MulCol TrialBalance’ Report.

[Report: MulCol Trial Balance]

ColumnReport: MyMultiColumns

Repeat : SVCurrentCompany, SVFromDate, SVToDate

 Figure 1.8 Multi Column Report

Step 2: Modifying the System Variables in a multi column Report

By clicking new column button, MyMultiColumns Report is displayed. In this Report, the user
inputs are captured which will be reflected in the System Variables.
 137

TDL Reference Manual
[Field: My MultiFromDate]

Use : Uni Date Field

Modifies : SVFromDate

[Field: My MultiToDate]

Use : Uni Date Field

Modifies : SVToDate

[Field: My MultiCompany]

Use : Name Field

Modifies : SVCurrentCompany

Table : Company

 Figure 1.9 Column Details for Multi Column Report

Step 3: Repeating Columns over a Variable and Lines over Objects of a Collection
To repeat columns over a Variable which is captured in MyMultiColumns Report following needs
to be done at various components of the MulCol Trial Balance Report.
138

TDL Reference Manual

1. Report Definition: Repeating over values of system variable which is captured in MyMulti-
Columns Report

[Report: MulCol Trial Balance]

Repeat : SVCurrentCompany, SVFromDate, SVToDate

2. Part Definition: Repeating Lines over objects of a Collection.

[Part: MulCol TB Details]

Lines : MulCol TB Details

BottomLines : MulCol TB Total

Repeat : MulCol TB Details: MulCol TB GroupLed

3. Line Definition:- Repeating Field
[Line: MulCol TB Details]

Fields : MulCol TB Name Field, MulCol TB Amount Field

Repeat : MulCol TB Amount Field

 Figure 1.10 Multi Column Report
 139

TDL Reference Manual
1.4 Auto-Column Reports
An Auto column report is one in which multiple columns are repeated by just one click of a button.
Trial Balance, Balance Sheet, Stock Summary etc. are some of the default Reports in Tally.ERP 9
which have an Auto column feature.

1.4.1 Designing an Auto Column Report
An Auto column Report is similar to a Multi column Report except that in an Auto column Report,
a set of columns are repeated instead of only one column. The user input will decide the criteria
on which these columns are repeated.

Example: Incorporating Auto Column Feature to Trial Balance report
Step 1 Adding the Configuration Screen to the Form
The Button MyAutoButton is added to Form. Through this Button, the configuration Report ‘MyAu-
toColumns’ is arrived at through the Auto columns mode.

[Form: MulCol Trial Balance]

BottomButton: MyAutoButton,

[Button: MyAutoButton]

Key : Alt+N

Action : Auto Columns : MyAutoColumns

Title : $$LocaleString:"Auto Column"

 Figure 1.11 Auto Column Reports
140

TDL Reference Manual

Step 2:The Configuration Report ‘MultiAutoColumns’
In the configuration Report shown above, the user will be given with options like ‘Days’,’ Monthly’,
Yearly’ ‘Company’ etc based on which the columns are repeated. In TDL, these options are
external objects.

[Collection: MyAuto Columns]

Title : $$LocaleString:"Column Details"

Object : MyCurrentCompany, MyQuarterly, MyMonthly, MyYearly, MyHalf-
Yearly

Filter : Belongs

Format : $$Name, 15

;; Belongs is a system formula which filters the objects
;; based on the value of the Methods BelongsIf of all the objects
;; Function Name returns the Name of any given objects

[Object: MyCurrentCompany]

Name : $$LocaleString:"Company"

VarName : "SVCurrentCompany"

CollName : "List of Primary Companies"

BelongsIf : $$NumItems:ListOfPrimaryCompanies > 1

IsAgeWise : No

Periodicity : ""

;; Function NumItems returns the number of selected companies
;; BelongsIf is a method of object MyCurrentCompany, which
;; is used to control the display of the object in the collection

[Object: MyQuarterly]

Name : $$LocaleString:"Quarterly"

VarName : "SVFromDate, SVToDate"

CollName : "Period Collection"

BelongsIf : "Yes"

IsAgeWise : No

Periodicity : "3 Month"

[Object: MyHalfYearly]

Name : $$LocaleString:"Half-Yearly"

VarName : "SVFromDate, SVToDate"

CollName : "Period Collection"

BelongsIf : "Yes"

IsAgeWise : No
 141

TDL Reference Manual
Periodicity : "6 Month"

[Object: MyMonthly]

Name : $$LocaleString:"Monthly"

VarName : "SVFromDate, SVToDate"

CollName : "Period Collection"

BelongsIf : "Yes"

IsAgeWise : No

Periodicity : "Month"

[Object: MyYearly]

Name : $$LocaleString:"Yearly"

VarName : "SVFromDate, SVToDate"

CollName : "Period Collection"

BelongsIf : "Yes"

IsAgeWise : No

Periodicity : "Year"

Columns can be repeated over any collection. It is not restricted only to a Period.
142

TDL Reference Manual

 Figure 1.12 Auto Repeat Columns

2. When the user selects any one of the options required, the system variables need to be
modified so that, the columns can be generated in the parent Report on the basis of
these values.

[Field: My SelectAuto]

Use : Short Name Field

Table : MyAutoColumns

Show Table : Always

[Field: My AutoColumns]

Use : Short Name Field

Invisible : Yes

Set as : $$Table:MySelectAuto:$VarName

Set always : Yes

Skip : Yes

;; Function Table selects the Object Name from the previous Field MySelectAuto
;; and displays the corresponding method value of VarName
 143

TDL Reference Manual
[Field: My CollName]

Use : Short Name Field

Invisible : Yes

Set as : $$Table:MySelectAuto:$CollName

Modifies : DSPRepeatCollection

Set always : Yes

Skip : Yes

;; We are modifying the value of the default variable DSPRepeatCollection
;; by the value of the Method CollName from the selected Object
;; DSPRepeatCollection is repeated in the Default Variables SVCurrentCompany,
;; SVFromDate and SVToDate, which gets new values for each column

[Field: My StartPeriod]

Use : Short Date Field

Invisible : Yes

Set as : if $$IsEmpty:$$Table:MySelectAuto:$Periodicity then+

 ##SVFromDate else if $$Table:MySelectAuto:+

 $Periodicity = "Day" then ##SVFromDate else +

 $$LowValue:SVFromDate

Set always : Yes

Modifies : SVFromDate

Skip : Yes

;; Value of Variable SVFromDate is set here based on the Periodicity Method.
;; LowValue is a Function that returns beginning date of the Current Period

[Field: My EndPeriod]

Use : Short Date Field

Invisible : Yes

Set as : if $$IsEmpty:$$Table:MySelectAuto:$Periodicity then+

 ##SVToDate else if $$Table:MySelectAuto:+

 $Periodicity = "Day" then $$MonthEnd:#DSPStartPeriod+

 else $$HighValue:SVToDate

Set always : Yes

Modifies : SVToDate

Skip : Yes
144

TDL Reference Manual

;; Value of Variable SVToDate is set here based on the Periodicity Method.
;; MonthEnd is a Function gives the last day for a given month

[Field: My SetPeriodicity]

Use : Short Name Field

Invisible : Yes

Set as : if NOT $$IsEmpty:$$Table:MySelectAuto:+

 $Periodicity then $$Table:MySelectAuto:+

 $Periodicity else "Month"

Set always : Yes

Modifies : SVPeriodicity

3. The generated values are sent to the Parent Report by using the Form attribute ‘Output’.

[Form: MyAutoColumns]

No Confirm : Yes

Parts : My AutoColumns

Output : My AutoColumns

Step 3: Repeating Columns over a Variable and Lines over Objects of a Collection
To repeat columns over a Variable which are captured in an Auto Columns Report, the following
needs to be done at various components of the MulCol Trial Balance Report

1. Report Definition: This involves repeating the Values of a System Variable which is cap-
tured in MyMultiColumns Report.

[Report: MulCol Trial Balance]

Repeat : SVCurrentCompany, SVFromDate, SVToDate

2. Part Definition: This involves repeating Lines over the Objects of a Collection.

[Part: MulCol TB Details]

Lines : MulCol TB Details

BottomLines : MulCol TB Total

Repeat : MulCol TB Details: MulCol TB GroupLed
 145

TDL Reference Manual
3. Line Definition: This involves repeating a Field.

[Line: MulCol TB Details]

Fields : MulCol TB Name Field, MulCol TB Amount Field

Repeat : MulCol TB Amount Field

 Figure 1.13 Auto Column Report

1.5 Automatic Auto-Column Reports
There may be situations when the columns are required automatically without the intervention of
the user when the report is opened. The Attendance Sheet is an example of the Automatic auto-
column Report in Tally.ERP 9.

1.5.1 Designing an Automatic Auto Column Report
In order to design an Automatic Autocolumn Report the function SetAutoColumns and the pre-
defined variables DoSetAutocolumn and the DSPRepeatCollection are used.

The following points must be considered while creating the automatic auto-column reports:
The value of the variable DoSetAutoColumn must be set to Yes.
The variable DSPRepeatCollection stores the Collection Name to be repeated.
146

TDL Reference Manual

The function SetAutoColumns accepts the name of a variable which is repeated over the
value of variable DSPRepeatCollection.
The columns are displayed based on the values in the collection provided by variable
DSPRepeatCollection.

Example
Consider the example of creating an auto-column for a Trial Balance. The same report can be
modified to have automatic Columns for Multiple selected companies. As mentioned earlier, the
following should be resorted to:

The variable DoSetAutoColumn must be set to Yes.
[Report: MulCol Trial Balance]

Set : DSPRepeatCollection: "List of Primary Companies"

The variable DSPRepeatCollection have to set “List of Primary Companies”
[Form: MulCol Trial Balance]

Option : Set Auto Option : $$SetAutoColumns:SVCurrentCompany

Add a dummy option in the Form Definition such that the condition of the same is $$SetAutoCol-
umns:SVCurrentCompany. The variable SVCurrentCompany will be repeated automatically as
soon as you enter the report, provided multiple companies are loaded.

Also add the following lines to the Form Definition MultiCol Trial Balance

Option : Set Auto Option : $$SetAutoColumns:SVCurrentCompany

[!Form: Set Auto Option]

Multiple companies should be loaded for this program. Now when the user selects the Menu Item
the following screen is displayed.
 147

TDL Reference Manual
 Figure 1.14 Displaying Trial Balance for two different companies

1.6 Columnar Report
All the Voucher Reports containing Accounting Information (Ledger and/ or Group Info) available
in a Voucher and can be displayed as Columns are categorized as Columnar Reports. For
example; Sales Register, Purchase Register, Journal Register, Ledger, etc. where the Voucher
Registers can display multiple columns and respective values for each column viz., the ledger, the
parent of the ledger, etc. entered in the voucher, as opted by the user.

Stock Registers and Sales Registers are a classic example of Columnar Reports.

2. Printing
In the previous section, we have understood the various types of reports and the techniques to
generate the same. The most essential element of Reporting is printing. All the reports must be
printable in one form or another.

These types of Reports also use the Auto Column concept for achieving disparate
columns.
148

TDL Reference Manual

2.1 Printing Techniques
The techniques used for Printing are as follows:
2.1.1 Menu Action – Print/ Print Collection
Menu Action, Print or Print Collection enters the final Report in Print mode.

Syntax

[Menu: <Menu Name>]

Add: Key Item:[Position]:<Display Item>:<Unique Key>:<Action Key
word>:<Action Parameter>

;; where Action Keyword can be Print or Print Collection which triggers a list and displays the
;; final report based on user selection

Example
[#Menu: Printing Menu]

Add : Key Item : My Ledgers: L : Print Collection: Ledger Vouchers

Add : Key Item : My Day Book: D : Print: Day Book

In the above example, we have added the Item My Ledgers, which has an action Print Collection
associated to it. It displays a collection bearing the List of ledgers which on user selection, enters
the final report in Print Mode. On accepting it directly goes to the printer.

2.1.2 Button Action – Print Report
Another method of printing reports is by way of associating a Button with an action Print Report at
the Form definition. Action Print Report prints the current report by default. This action accepts
Report Name as its parameter. If any report other than current needs to be printed, an additional
parameter containing Report Name needs to be specified. The current report can pass the user
selection to the printing report through a default collection called Parameter Collection.

Syntax

[Button: <Button Name>]

Action: <Print Report>[: Action Parameter]

Example
Consider a report displaying a list of employees, wherein the user selects the required employees
for whom pay slips need to be printed. On clicking the Print Button, the current report bearing list
of employees is not required. A new report printed for various pay slips allotted to selected
employees is needed.

[Button: Print Selected Pay slips]

;; Associate this button to the current report displaying list of employees
 149

TDL Reference Manual
Key : Alt + F11 Title : "Print Selected Pay slips"

 ;; Multiple Payslip Print Report will be printed on activation of this Button
;; The Report should be altered to include inbuilt Collection Parameter
;; Collection to print the user selection for list of employees

Action : Print Report : Multi Pay Slip Print

Scope : Selected Lines

[#Report: Multi Pay Slip Print]

Collection: Parameter Collection

In the above example, the Button Print Selected Pay slips is defined with Action ‘Print Report’
which also has an action parameter i.e., the Report Name to be printed. The scope of the Button
is Selected Lines, which means that the final Report ‘Multi Pay Slip Print’ must contain only the
selected Objects from the current Report. The user selection is passed to the new Report through
a Collection called ‘Parameter Collection’ which must be used in the destination Report ‘Multi Pay
Slip Print’. So, the Report ‘Multi Pay Slip Print’ can be modified and added to the collection
‘Parameter Collection’.

2.2 Page Breaks
A Page Break is the point at which one page ends and another begins. Handling Page Breaks is
very important, since the current page should indicate the continuation to the next page and the
next page must indicate that the current page is continued from a previous page.This indicates
that there has to be a closing identifier i.e., closing page break information and an opening identi-
fier i.e., opening page break information.

In other words, Page Breaks specify the headers and footers for every page, and is printed
across multiple pages. Closing Page Break starts printing from the first page and prints on every
page except the last page. For e.g., Continued... to be printed at the bottom of each page. An
opening Page Break starts printing from the second page till the last page. Closing Page Break is
specified before Opening Page Break since in any circumstance, closing page break will be
encountered first.

In TDL, Page Break can be handled both vertically as well as horizontally.

2.2.1 Types of Page Breaks
Vertical Page Breaks
In cases where a report containing data cannot be printed in a single page, one needs to use
vertical page breaks.
Vertical Page Breaks can be specified at 2 levels; viz., Form and Part.
150

TDL Reference Manual

Form Level Page Break
Vertical Page Breaks can be specified at Form through the Form Attribute Page Break. It takes 2
parameters, viz., First Part for Closing Page Break and Second Part for Opening Page Break.

Syntax

[Form: <Form Name>]

 Page Break : <Closing Part>, <Opening Part>

Example
Consider a Trial Balance report of a company, which requires the title and address of the
Company in the first page and the grand total in the last page. In the pages between the first and
last page, the text may be required to be continued at the end of each page and Company Name
and Address at the beginning of each page.

[Form: My Trial Balance]

Page Break : Cl Page Break, Op Page Break

;; where both Cl Page Break and Op Page Break are Parts

[Part: Cl Page Break]

Lines : Cont Line

[Line: Cont Line]

Fields: Cont Field

Border: Full Thin Top

[Field: Cont Field]

Set As : “Continued…”

Full width : Yes

Align : Right

[Part: Op Page Break]

Parts : DSP OpCompanyName, DSP OpReportTitle

Vertical: Yes

In the above example, Closing Page Break is defined to print Continued at the end of every
continued page. Opening Page Break is defined to print the Company Name and Report Title at
beginning of all the continuing pages. Since more than one part is used within a part definition,
specify the alignment to Vertical, if required.

Part Level Page Breaks
Vertical Page Breaks can be specified at Part through the Part Attribute Page Break. This is
generally used when the Page Totals are to be printed for each closing and opening pages.
 151

TDL Reference Manual
It takes 2 parameters, viz., First Line for Closing Page Break and Second Line for an Opening
Page Break.

Syntax

[Part: <Part Name>]

Page Break : <Closing Line>, <Opening Line>

Example
Consider a Trial Balance Report of a company, where we may require the running page totals to
be printed at the end and beginning of each page.

[Part: My Trial Balance]

Page Break : Cl Page Break, Op Page Break

;; where both Cl Page Break and Op Page Break are Lines

[Line: Cl Page Break]

Use : Detail Line

Local : Field: Particulars Fld: Set As: “Carried Forward”

Local : Field: DrAmt Fld: Set As: $$Total:DrAmtFld

Local : Field: CrAmt Fld: Set As: $$Total:CrAmtFld

Local : Field: NetAmt Fld: Set As: $$Total:NetAmtFld

Border: Full Thin Top

[Line: Op Page Break]

Use : Cl Page Break

Local : Field: Particulars Fld: Set As: “Brought Forward”

In the above example, the Line Cl Page Break is defined to use the pre-defined Detail Line and
the relevant fields are modified locally to set the respective values. Similarly, Line Op Page Break
is defined to use the above defined line Cl Page Break which locally modifies only the particulars
field.

Horizontal Page Breaks
Horizontal Page Breaks are used if the number of columns run into multiple pages.

Line Level Page Breaks
Horizontal Page Breaks can be specified at Line through the Line Attribute Page Break. This is
generally used to repeat a closing column at every closing page and opening columns at every
opening page. It takes 2 parameters, viz., First Field for Closing Page Break and Second Field for
Opening Page Break.
152

TDL Reference Manual

Syntax

[Line: <Line Name>]

Page Break : <Closing Field>, <Opening Field>

Example
Consider a Columnar Sales Register Report of a company, where multiple columns are printed
across the pages. Some fixed columns are required in subsequent pages which makes it easy to
map the columns in subsequent pages.

[#Line: DSP ColVchDetail]

Page Break : Cl Page Break, Op Page Break

;; where both Cl Page Break and Op Page Break are Fields

[Field: Cl Page Break]

[Field: Op Page Break]

Fields : DBC Fixed, VCH No

In the example mentioned above, the Field Cl Page Break is defined as Empty since no Closing
Column or Field is required and Field Op Page Break is defined with further fields DBC Fixed and
VCH No which are available in default TDL.

TABLE 9:1 Comparison between different pagebreaks

2.3 Frequently Used Attributes and Functions
2.3.1 Attributes
Line Level Attribute – Next Page
The Next Page attribute specifies the cut off line that gets printed in the subsequent page. It
accepts a logical formula as its parameter.

Form Level Page Break Part Level Page Break Line Level Page Break
This is a Vertical Page Break This is a Vertical Page

Break
This is a Horizontal Page
Break

Page Break attribute accepts
Part Names as its value

Page Break attribute
accepts Line Names as its
value

Page Break attribute
accepts Field Names as its
value

Multiple Parts (parts within
parts) can be printed both at
closing and opening page
breaks

Multiple lines (lines within
lines) can be printed at both
closing and opening page
break

Multiple Fields (Fields
within Fields) can be
printed at both closing and
opening page break

Form Level Page Breaks
cannot handle running Page
Totals

Running Page Totals can be
handled with Part Level
Page Break

Column Page Totals can be
handled with Line Level
Page Break
 153

TDL Reference Manual
Syntax

[Line: <Line Name>]

Next Page: <Logical Formula>

Example
[Line: DSP Vch Explosion]

Next Page : (($$LineNumber = $$LastLineNumber) AND $$IsLastOfSet)

The attribute – Preprinted/ PrePrinted Border
The Attribute Preprinted or Preprinted Border can be specified at Part, Line and Field Definitions.
These attributes work in conjunction with preprinted/ plain button in the Print Configuration
screen. When the Preprinted attribute is set to Yes, the contents of the current Part, Line or Field
will be left blank assuming the same to be pre-printed. When the Preprinted Border attribute is set
to Yes, the borders used in the current Part, Line or Field will be assumed to be pre-printed.

Syntax

[Line: <Line Name>]

Preprinted: <Logical Value>

Example
[Line: Company Name]

Preprinted : Yes

2.3.2 Functions
PageNo and PartNo
The PageNo function returns the current Page Number while the PartNo function returns the
current Part Number of the page. These functions do not require any parameter and the return
type for PageNo is Number and PartNo is String.

Syntax

$$PageNo

$$PartNo

Example
[Field: My PageNo]

Set as: “Page ” + $$String:$$PageNo + “ (“ + $$PartNo + “)”

IsLastOfSet
This function is used to check if the current Form is the last Form being printed. This function
doesn’t require any parameter. It returns the logical value as True if the current Form is the last
Form being printed, else returns False.
Syntax

$$IsLastOfSet
154

TDL Reference Manual

Example
[Line: DSP Vch Explosion]

Next Page : (($$LineNumber = $$LastLineNumber) AND $$IsLastOfSet)

DoExplosionsfit
In the process of printing, if a line is exploded, then this function can be used to check whether the
exploded part fits within the current page. This function also doesn’t require any parameter and
returns its logical value. It returns its logical value as Yes, if it is true.

Syntax

$$DoExplosionsFit

Example
[Line: EXPSMP InvDetails]

NextPage : NOT $$DoExplosionsFit OR (($$LineNumber = $$LastLineNumber)

BalanceLines
This function is used to check the balance number of lines in the repeated lines, including the
exploded part-lines present, in a given part. Scroll : Vertical must be specified at the Part defini-
tion in order to use this function. This function too does not require any parameter and returns a
Numerical value.

Syntax

$$BalanceLines

Example
[Line: AccType Detail]

NextPage : ($$BalanceLine > 0) AND (($$BalanceLines < 5)

In the example mentioned above, if the Balance number of lines is between 0 and 5, the
remaining lines will be printed on the next page.

2.4 Validation and Controls
Data validation and controls in Tally can be done at two levels, either at the Platform level or at the
TDL level. TDL Programmers do not have control over any of the Platform level validations. TDL
Programmers can only add validation and controls at the TDL Level.

Let us understand some of the TDL Level validation and control mechanisms.

2.4.1 Field Level Attribute — Validate
This attribute checks if the given condition is satisfied. Unless the given condition is satisfied, the
user cannot move further. In other words, if the given condition for Validate is not satisfied, the
 155

TDL Reference Manual
cursor remains placed on the current field without moving to the subsequent field. It does not
display any error message.

Syntax

Validate : <Logical Formula>

Example
[Field: CMP Name]

Use : Name Field

Validate : NOT $$IsEmpty:$$Value

Storage : Name

Style : Large Bold

In this code snippet:
The field CMP Name is a field in Default TDL which is used to create/ alter a Company.
Validate stops the cursor from moving forward, unless some value is entered in the cur-
rent field.
The function, IsEmpty returns a logical value as True, only if the parameter passed to it
contains NULL.
The function, Value returns the value entered in the current field.

Thus, the Attribute Validate used in the current field, controls the user from leaving the field blank
and forces a user input.

2.4.2 Field Level Attribute — Unique
This attribute takes a logical value. If it is set to Yes, then the values keyed in the field have to be
unique. If the entries are duplicated, an error message, Duplicate Entry pops up. This attribute is
useful when a Line is repeated over UDF/Collection, in order to avoid a repetition of values.

Syntax

Unique: [Yes / No]

Example
[!Field: VCHPHYSStockItem]

Table : Unique Stock Item : $$Line = 1

Table : Unique Stock Item, EndofList

Unique: Yes

In this code snippet, the field, VCHPHYSStockItem is an optional field in DefTDL which is used in
a Physical Stock Voucher. The attribute, Unique avoids the repetition of Stock Item names.
156

TDL Reference Manual

2.4.3 Field Level Attribute — Notify
This attribute is similar to the attribute Validate. The only difference here, is that it flashes a
warning message and the cursor moves to the subsequent field. Here, a System Formula is
added to display the warning message.
Syntax

Notify : <System Formula> : <Logical Condition>

Example
[!Field: VCH NrmlBilledQty]

Set as : if @@HasInvSubAlloc then $$CollQtyTotal: +

BatchAllocations : $BilledQty else @ResetVal

Skip On : @@HasInvSubAlloc

Style : if @@IsInvVch then "Normal" else "Normal Bold"

Notify : NegativeStock:##VCFGNegativeStock AND +

 @@IsOutwardType AND$$InCreateMode AND +

 $$IsNegative:@@FinalStockTotal

In this code snippet, VCH NrmlBilledQty is a default optional field in DefTDL used in a Voucher.
‘Notify’ pops up as a warning message, if the entered quantity for a stock item is more than the
available stock and the cursor moves to the subsequent field.

2.4.4 Field Level Attribute — Control
The attribute Control is similar to Notify. The only difference is that it does not allow the user to
proceed further after displaying a message. The cursor does not move to the subsequent field.

Syntax

Control : <System Formula : Logical Condition>

Example
[Field: VCH Number]

Use : Voucher Number Field

Inactive : @@NoVchNumbering

Skip On : @@AutoVchNumbering

Control : DuplicateNumber : @@NoDupVchNumbering AND +

 (NOT $$InAlterMode OR NOT @SameVchTypeAndNum)AND +

 $$IsDuplicateNumber:$$Value:

SameVchTypeAndNum : $VoucherTypeName = ##ORIGVchType AND +

$$Value = ##ORIGVchNum

Validate : (@@NoDupVchNumbering AND NOT $$IsEmpty:$$Value) +
 157

TDL Reference Manual
OR NOT @@NoDupVchNumbering

Keys : PrevVchNumber

In this code snippet, the field, VCH Number is a default field in DefTDL used in a Voucher. The
duplication of voucher numbers for a particular voucher type is prevented by using the attribute,
Control. The difference between the field Attributes, Validate, Notify and Control are:

TABLE 9:2 Difference between the validation control attributes

2.4.5 Form Level Attribute — Control
This attribute achieves a higher level of control on the contents of a Form over other controls used
at the Lower levels of the Form. If the condition specified with Control is not satisfied, then the
Form displays an error message while trying to save. The Form cannot be saved until the
condition in the attribute Control is fulfilled.

Syntax

Control : <String Formula : Logical Formula>

Example
[Form: Voucher]

Control : DateBelowBooksFrom : $Date < +

 $BooksFrom:Company :##SVCurrentCompany

Control : DateBelowFromDate : $Date < $$SystemPeriodFrom

Control : DateBeyondToDate : $Date > $$SystemPeriodTo

In the example, Voucher is a default Form. While creating a voucher, the attribute, Control does
not accept dates beyond the financial period or before beginning of the books.

2.4.6 Menu Level Attribute — Control
The attribute, Control restricts the display of Menu Items, based on the given condition.

Syntax

Control : <Item Name> : <Logical condition>

Example
[!Menu: Gateway of Tally]

Key Item : @@locAccountsInfo : A : Menu : Accounts Info. : NOT +

Field Attributes Displays Message Cursor Movement
Validate No Restricted
Notify Yes Not Restricted
Control Yes Restricted
158

TDL Reference Manual

 $$IsEmpty:$$SelectedCmps

Control : @@locAccountsInfo : $$Allow:Create:AccountsMasters OR +

 $$Allow:Alter:AccountsMasters

In this code snippet, the Menu, Gateway of Tally is a default optional menu definition in DefTDL.
The Menu Item, Account Info., will be displayed only if the given condition is satisfied. The
function, Allow checks whether the current user has the rights to access the report displayed
under the current Menu item. The value Accounts Masters has been derived from the attribute,
Family at the report definition.

2.4.7 Report Level Attribute — Family
The value specified with the attribute, Family is automatically added to the security list as a pop-
up while assigning the rights under Security Control Menu.

Syntax

[Report: <Report Name>]

Family : <String Value>

Example
[Report: Ledger]

Family : "Accounts Masters"

In this code snippet, the Accounts Masters will get added to the Security list. Without the user
rights for Accounts Masters in the Security controls, this report neither be created, altered nor
viewed.

Learning Outcome
Tally.ERP 9 caters to 3 different types of Reports. These are:
 Tabular Report: - Report with fixed number columns which can be configured
 Hierarchical Report :- Report in successive levels or layers
 Columnar Report :- Report with multiple columns

The Explode attribute is an attribute of the line, which is used to take the current data
from the Line Object.
$$KeyExplode function gives the current status of the keys Shift and Enter. This is used
as a condition to check if the user has pressed the Shift+Enter Keys.
The Multi column report is a report in which a column is repeated based on the criteria
specified by user.
Page Break is the point at which one page ends and another begins.
Data validation and controls in Tally can be done at two levels, either at the Platform level
or at the TDL level.
 159

Voucher and Invoice Customisation
Introduction
A voucher is a primary document that contains all the information regarding a transaction. To
begin with, it is necessary to understand the classification of vouchers and their structure.
Voucher and Invoice Customisation will be dealt with later in this Topic.

1. Classification of Vouchers
For every transaction in Tally, you can make use of an appropriate voucher to enter all the
required details. Vouchers are broadly classified into three types:

Accounting Vouchers
Inventory Vouchers
Accounting-cum-Inventory Vouchers

1.1 Accounting Vouchers
Accounting Vouchers imply recording transactions which require only the accounting details that
do not have any impact on the inventory. Receipt, Payment, Contra and Journal Vouchers are all
Accounting Vouchers.

In cases where the option Inventory Values are affected? (which is used for Journal/ Payment/
Receipt entries) is set to Yes in the Ledger Master, the entries made will also accept the stock
items. However, this is not a standard business practice. Entries of this sort, are usually reflected
in the Inventory Reports.

These transactions affect only the Accounting Reports.
 161

TDL Reference Manual
1.2 Inventory Vouchers
Inventory Vouchers imply the recording of transactions which require details pertaining only to the
inventory and do not have any impact on accounts. Stock Journal and Physical Stock Vouchers
are both Inventory Vouchers.

1.3 Accounting-cum-Inventory Vouchers
Accounting-cum-Inventory Vouchers are transactions which contain details pertaining to both
Accounts as well as Inventory. Purchase Order, Receipt Note, Rejection In, Debit Note, Purchase,
Sales Order, Delivery Note, Rejection Out, Credit Note, Sales are all Accounting-cum-Inventory
Vouchers.

2. The Structure of a Voucher Object
A Voucher Object store two types of information, Base Information and Actual Entries.

Base Information consists of base methods like Voucher Number, Date, Reference, Narration
and so on, which are common to all the voucher types.

Actual Entries are the entries pertaining to Accounts and Inventory.

The following six collections have been introduced to handle transactions based on the three
types of vouchers explained earlier. They are:

Ledger Entries
Inventory Entries
All Ledger Entries
All Inventory Entries
Inventory Entries In
Inventory Entries Out

These transactions do not affect the Accounting Reports except when the Closing
Stock value is computed and the option if Integrate Accounts and Inventory option is set
to Yes in the F11 Accounting/Inventory Features.

Purchase Orders, Receipt Notes, Rejection Ins, Sales Orders, Delivery Notes and
Rejection Outs only affect the Inventory Reports whereas Debit Notes, Purchase Notes,
Credit Notes and Sales affect the Accounting as well as Inventory Reports, if the
Tracking Number is set to Not Applicable else it affects only the Accounting Reports.
162

TDL Reference Manual

The hierarchy of Voucher Objects is as shown below:

 Figure 1.1 Hierarchy of Voucher objects

The base entries of a Voucher are Date, Voucher Type, Voucher Number, etc.
The first level consists of two basic collections namely, Ledger Entries and Inventory Entries.
Each Ledger Entry Object has its own Base Methods like Ledger Name, Amount, Bill Allocation
Collec¬tion and Cost Category Allocation Collection. Each Cost Category Allocation Object in
turn, contains its own Methods, which are Name, Amount and a Cost Centre Allocation Collection.

Accounting Vouchers use collections of the following type:
Ledger Entries
All Ledger Entries

Inventory Vouchers use collections of the following type:
Inventory Entries
All Inventory Entries
Inventory Entries In
Inventory Entries Out

Accounting-cum-Inventory Vouchers use collections of the following type:
Ledger Entries
All Ledger Entries
Inventory Entries
All Inventory Entries
 163

TDL Reference Manual
3. Customisation
A user usually enters transactions in a voucher and prints it in the default format provided.
However, there may be instances, when the user would want to have it printed in a format other
than the default one provided in Tally. In such circumstances, the user may have to get it custom-
ised according to the company needs.
Incases where, there is a requirement for customisation, adhere to the following steps:

1. Analyse the format required by the company to judge whether
 The requirement can be met with the default format with some minor changes.

OR
 A new format needs to be designed

2. Check whether any additional input fields are required. If required, add the appropriate
UDFs at relevant places.

3. Identify the definitions that need to be altered to suit the user requirements.

3.1 Voucher Customisation
Let us consider the following examples inorder to understand the concept of Voucher Customisa-
tion.
Case 1
Problem Statement
A Company named ‘ABC Company Ltd’ needs the Cheque No., Date and Bank Name printed on
a Payment/ Receipt Voucher and Receipt. There should also be an option of whether the Cheque
details are to be printed or not.

Solution
Step 1 : Add additional fields to capture the Bank Name, Cheque Number and Cheque Date
For this the following UDFs are created.

[System: UDF]

BankName : String : 1000

NarrWOCh : String : 1001

ChequeNumber: Number : 1000

ChqDate : Date : 1000

The UDFs mentioned above are used in the existing Part VCH Narration.

In this chapter we would be referring input screens as Vouchers and print screens as
Invoice.
164

TDL Reference Manual

[#Part: VCH Narration]

;; Modify the Narration Part to add the details
Add : Option : BankDet VCH Narration : @@IsPayment OR @@IsReceipt

Add : Option : BankDet VCH NarrationRcpt: @@ReceiptAfterSave

On entering the required details, the screen of the Receipt Voucher looks like this:

 Figure 1.2 Alteration screen of a Receipt Voucher

Step 2
The Configuration screen of Receipt and Payment Voucher is altered to add a new option. In this,
the existing Parts Payment Print Config and Receipt Print Config have been altered.

;; Payment Config Changes
[#Part: Payment Print Config]

Add : Lines : Before: PPRVchNarr : PPR ChqDetails

;; Receipt Config Changes
[#Part: Receipt Print Config]

Add : Lines : After: PPRWithCost: PPR ChqDetails
 165

TDL Reference Manual
Step 3
The existing Field PPR Narr and Part PPRBottomDetails is altered to get the required Receipt /
Payment Voucher.

[#Field: PPR Narr]

Option : PPR Narr Rct Pymt

[#Part: PPRBottomDetails]

Option : PPRBottomDetails Rct Pymt: (@@IsPayment OR @@IsReceipt) AND
##PPRChqInfo
166

TDL Reference Manual

The print out of a Customised Receipt Voucher is as shown:

 Figure 1.3 Print preview of a customised Receipt Voucher
 167

TDL Reference Manual
Step 4
The existing Field PRCT Thru is altered to get the required Receipt/Payment Voucher.

[#Field: PRCT Thru]

Option : PRCT Thru Rct Pymt: @@IsReceipt

The print out of a Customised Receipt is as shown.

 Figure 1.4 Print Preview of a customised Receipt Voucher

Case 2
Problem Statement
Consider adding columns for Marks and Number of Packages to Sales Voucher, instead of lines
which are already available by default in Tally.
168

TDL Reference Manual

Solution
To add a column in the Invoice screen, you should know:

The position in which you have to add a field
The number of lines to be altered to incorporate the new field
The type of UDF required for the field (if required)

The steps to be followed are enlisted below:
Firstly, you need to identify the lines that have to be altered to add the required fields.
Check the field name in the column title and the details of lines in the inventory entries
made. Similarly, check the ledger entries collection including the batch allocations, total
and subtotal lines. Check all the lines that may be effected in the invoice portion.
Add the field in all the lines found.

The following lines are to be altered to achieve the required modification.

;; Invoice Column Headings1 without class
[Line : EI ColumnOne]

;; Invoice Column Headings2 with class
[Line : EI ColumnTwo]

;; Invoice Inventory Entries without Class
[Line : EI InvInfo]

;; alternate quantity details line
[Line : STKVCH AltUnits]

 ;; Invoice Inventory Entries with Class
[Line : CI InvInfo]

 ;; are added at the form level
[Form : Export Invoice]

The following screen shows two input fields added or relocated in the Inventory Entries details:
 169

TDL Reference Manual
 Figure 1.5 Voucher Alteration screen with new fields

Refer to the sample code for the same.

Case 3
Problem Statement
Consider adding a Subform for a stock item to enter the Height and Width. The dimension is cal-
culated on the basis of the Height and Width entered, and the same is reflected in the Quantity
field.

Solution
To add a Subform, one should know:

The field at which a Subform needs to be called, with or without any condition.
How to defin a Subform Report and its components.
Whether the Subform would effect the main screen from which it was called, with any
modifications.

Proper care should be taken to consider all the situations, while addressing similar requirements,
such as with or without activation of Actual and Billed Quantity, with or without Batch wise screen.
The following lines are to be altered to achieve the required modification.
[#Field: VCHACC StockItem]

Add : SubForm : At Beginning : StkVCH Dimension : NOT $$IsEnd:$StockItemName
170

TDL Reference Manual

 Figure 1.6 Sub Forms

Refer to the sample code for the same.
Case 4
Problem Statement
Altering an existing Discount column that would change the default working of Tally.

Solution
To achieve this, first change the default Discount column from Percentage to Amount.
The changes that should be done in the default Tally screen are:

Reformat Discount at Price level
[#Field: MPSDiscountTitle]

Set as : "Discount Amt"

Reformat Discount at Inventory Entries not to show the Percent sign
[#Field: VCH Discount]

Delete : Format

Add : Format : "NoPercent,NoZero"
 171

TDL Reference Manual
Reformat Discount at Batch Allocations not to show the Percent sign
[#Field: VCHBATCH Discount] format

Delete : Format

Add : Format : "NoPercent,NoZero"

Change the valuation accordingly in VCH Value

;; To change the Invoice Value field when there are no Batch Allocations
[#Field : VCH Value]

ResetVal: if (@@NoBaseUnits OR $$IsEmpty:$BilledQty) then $$Value +

 else (($Rate * $BilledQty) - $Discount)

Change the formula by which the discount is calculated

;; Recalculate the following Formula rest will be taken care by Tally
[System: Formula]

CalcedAmt : ($Rate * $BilledQty) - $BatchDiscount

NrmlAmount : ($BilledQty * $Rate) - $BatchDiscount

172

TDL Reference Manual

 Figure 1.7 Stock Item Allocation Screen

3.2 Invoice Customisation
Invoice Customisation can broadly be classified into the following categories based on the
requirement:

Invoice Customization – User defined format
Invoice Customization – Modifications to default format

3.2.1 Invoice Customization – User Defined Format
A totally new Invoice format needs to be developed in this category, after which it can be enabled
in the following two different ways.

Adding new format along with default format
Replacing the existing format with new one
 173

TDL Reference Manual
Adding a new format with a default format
To create a new format of invoice by modifying the existing Form Sales Color in addition to the
default Print Report code.
This manner of Customisation begins with the following code snippet:

[#Form: Sales Color]

 Add : Print : Sales Invoice

[Report : Sales Invoice]

Form : Sales Invoice

Object : Voucher

In this code snippet, the default Print Report is deleted, the Report Sales Invoice is added and the
Object Voucher is associated to it. However, in the previous example, it was not necessary to
associate the Voucher Object, since it was already associated in the default Report, Printed
Invoice.

Case 1
Problem Statement
ABC Company Ltd. requires a Sales Invoice which inturn requires the following format in addition
to the default Sales Invoice.
174

TDL Reference Manual

 Figure 1.8 Invoice Customisation - Comprehensive
 175

TDL Reference Manual
Replacing the existing format with the new one
By default, the basic formats provided for Commercial Invoice Printing are:

Normal Invoice i.e. Comprehensive Invoice
Simple Invoice i.e. Simple Printed Invoice

The Comprehensive Invoice and Simple Printed Invoice are two optional forms which are
executed on the basis of satisfying a given condition. The default option available for print is the
Comprehensive Invoice.

A Simple Invoice is printed if the option Print in Simple Format is set to Yes in F12 Configura-
tion. On the other hand, a Comprenhensive Invoice is printed only if the user opts for a Neat
Format mode of printing and the option mentioned above is set to No.
176

TDL Reference Manual

Case 1
Problem Statement
ABC Company Ltd. requires a Sales Invoice which inturn requires the following format for both a
Normal Invoice as well as a Simple Invoice.

 Figure 1.9 Invoice Customisation - Simple
 177

TDL Reference Manual
Solution
Step 1
Default Forms for a Comprehensive Invoice and Simple Printed Invoice are modified with an
optional Form.
[#Form: Comprehensive Invoice]

Add: Option: My Invoice: @@IsSales

[#Form: Simple Printed Invoice]

Add: Option: My Invoice: @@IsSales

Step 2
The Parts and Page Breaks of the default Form are deleted and new Parts are added.
To begin with, the Invoice is classified into three parts: Top Part, Body Part and Bottom Part

These Parts can be further divided into any number of Parts according to the user’s requirement.
[!Form: My Invoice]

Delete : Parts

Delete : Bottom Parts

Delete : PageBreak

Space Top : 0

Space Bottom: 0

Space Left : 0

Space Right : 0

Add : Part : My Invoice Top Part

Add : Part : My Invoice Body Part

Add : Bottom Part: My Invoice Bottom Part

3.2.2 Invoice Customization – Modifications to default format
There may be a requirement in an Invoice customisation which is similar to the default Tally format
with some minor changes. In such cases, one can just alter the default definitions as required.
178

TDL Reference Manual

Case 1
Problem Statement
A Company ABC Company Ltd. requires an Invoice with its Terms and Conditions as shown.

 Figure 1.10 Invoice Customisation
 179

TDL Reference Manual
Solution
Step 1
The default configuration Part IPCFG Right is altered to add the Line option.

[#Part: IPCFG Right]

Add : Lines : GlobalWithTerms

Step 2
The default Part EXPINV ExciseDetails is altered to cater to the requirement.

[#Part: EXPINV ExciseDetails]

Delete: Lines : EXPINV ExciseRange, EXPINV ExciseRangeAddr, +

 EXPINV ExciseDiv, EXPINV ExciseDivAddr, +

 EXPINV ExciseSerial, EXPINV InvoiceTime, +

 EXPINV RemovalTime

Add : Lines : EXPINV SubTitle, EXPINV ExciseDetails

Repeat: EXPINV ExciseDetails : Global Terms

Local :Field: EXPINV SubTitle : Info : "Terms & Conditions :"

Local :Field: EXPINV SubTitle : Border : Thin Bottom

Local :Line : EXPINV SubTitle : Space Bottom : 1

Invisible: NOT @@IsInvoice OR NOT ##ShowWithTerms

Case 2
Problem Statement
Sorting Inventory Entries as per user requirement.
Solution
The Inventory Entries of an invoice are printed in the order in which they are entered. This order
can be changed as per user requirement. The sorting can be done in either the ascending or
descending order in terms of the item name, stock group, stock category, units of measure, rate,
value and so on. To denote the descending order, attach ‘—’ sign to it.

To change the order of the default invoice:
Define a Collection of inventory entries in the desired sorted order

[Collection : Sorted Inventory Entries]

Type : Inventory Entries : Voucher

Sort : Default : -$Parent:StockItem:$StockItemName, $StockItemName

Note the Part in which the statement repeat ‘Line of Inventory entries’ mentioned in the
DefTDL and Change this Part to ‘repeat the Line with the new Collection defined’.

 [#Part: EXPINV InvInfo]

 Repeat: EXPINV InvDetails : Sorted Inventory Entries

 ;; End-of-Code
180

TDL Reference Manual

Learning Outcome
Vouchers are broadly classified into three types:
 Accounting Vouchers
 Inventory Vouchers
 Accounting-cum-Inventory Vouchers

Voucher Objects store two types of information, Base Information and Actual Entries.
 181

Section II
 TDL – Language Enhancements

General and Collection Enhancements
In Tally.ERP 9, major changes have been provided by the platform to enhance the TDL capabili-
ties which helps the programmer to develop and deploy quick and efficient solutions with ease.
Major improvements have taken place in terms of language usage standardisation and perform-
ance improvements.

Breakthrough enhancements at the Collection level to provide capabilities of Remoting and
Advanced Reporting. Collection is now a complete Data Processing Artifact in TDL.

This document provides in depth knowledge into the various enhancements at the attribute,
modifier, method formula syntax and symbol prefixes. The foremost focus of the book is towards
the enhancements at the collection level for providing the capabilities for aggregation, usage as
tables, XML collection and dynamic object creation support for HTTP-XML based information
interchange.

1. Attributes and Modifier Enhancements
In Tally.ERP 9 new attributes and modifiers are introduced to support the new capabilities. The
behaviour of some of the exsisting attributes and modifiers is also changed.

1.1 New Attributes
New attributes that are introduced are explained in this section.

1.1.1 Field Attribute – Set By Condition
A new field attribute Set By Condition has been introduced. The attribute Set By Condition is
similar to a conditional Set as at Field level. If multiple Set By Condition is mentioned under a
Field, then the last satisfied Set By Condition will be executed.

Syntax

Set By Condition : <Condition> : <Value>

Where,
<Condition> is any logical formula
<Value> is any string or formula.
 185

TDL Reference Manual
Example:
[Field: Sample SetbyCondition]

Set as : “Default Value”

SetbyCondition : ##Condition1 : "Set by Condition 1"

The Field Sample SetbyCondition will contain value Set by Condition1 if the expression
Condition1 returns true else Field will contain value ‘Default Value’.

1.1.2 Field Attribute – ToolTip
A new Field attribute ToolTip has been introduced. As the name suggests, the value specified with
this attribute is displayed when the mouse pointer is placed on a particular field. This means that
in addition to the static information displayed by Info or Set As attributes; we can communicate
additional meaningful information with the help of this attribute. As against attributes Info or Set
As, this attribute value is independent of the Field Width. In other words, when the user hovers
the mouse pointer over the Field, a small hover box appears with supplementary information
regarding the item being pointed over.

Syntax

Tool Tip : <Value>

Where,
<Value> can be String or Formula

Example:
[Field: Led Name]

Storage : Name

Tool Tip : “Please Enter the Name of the Ledger”

1.1.3 Report Attribute – Full Screen
The new attribute Full Screen is introduced in Report definition. It helps to control the display of
command window/calculator pane. It is a logical type of attribute.

Syntax

Full Screen : Yes /No

If this is set to Yes, command window will be hidden providing extra space when the report is dis-
played. The default value of this attribute is Yes. In case of the Sub-Report/AutoReport, if the
value of this attribute is not specified, the default value is "No".

Example:
[Report : My Report]

Full Screen : Yes
186

TDL Reference Manual

1.1.4 Part Attribute – Retain Focus
Attribute Retain Focus is added to part definition. It indicates that part should retain information
about the line which is currently in focus even if the focus is moved to other part. This allows the
part to make the same line as the current line when it gets back the focus.

Syntax

Retain Focus : Yes / No

Example:
[Part : LedPart]

Retain Focus : Yes

1.1.5 Part Attribute – Default Line
The attribute Default Line is used to highlight the appropriate line which satisfies the given condi-
tion. All the methods of the object associated with the line, can be used while specifying the con-
dition.

Syntax

Default Line : <Condition>

When the Report is invoked, the Line for which the condition is true is highlighted by default.

Example:
If the Line is repeated over collection of object Legers, then the following code will highlight the
line of Cash Ledger.

[Part : The Main Part]

Default Line : $Name = “ Cash”

1.1.6 Collection Attribute – Sub Title
Along with the Table title, sub titles for the columns can also be given. The attribute Sub Title is
introduced in Collection definition.

Syntax

Sub Title : <List of Comma Separated Strings>

<List of Comma Separated Strings> are Strings separated by comma with respect to the
number columns. Sub Title is a List type attribute.

Example:
[Collection: DebtorsLedTable]

Type : Ledger

Child Of : $$GroupSundryDebtors
 187

TDL Reference Manual
Format : $Name, 15

Format : $OpeningBalance, 10

Title : $$LocaleString:"Table Sub-Titles"

Sub Title : $$LocaleString:"Name"

Sub Title : $$LocaleString:"Op.Balance"

The above code snippet displays a table with two columns. Column titles are also displayed with
the help of attribute Sub Title.
Instead of specifying the Sub Title attribute multiple times a comma separated list can be given
as shown.

Sub Title : $$LocaleString:"Name", $$LocaleString:"Op.Balance"

1.2 Behavioral Changes of Attributes
Enhanced are done in the behaviour of following attributes:

1.2.1 Set as / Info Attributes
As of Release 2.x, the attributes Set as and Info were treated as the same attribute with aliases,
when ‘Info’ is used, it had a special Skip and Prompt privilege. If both were specified the last spec-
ification would override the previous specification and would be the effective specification.

Tally.ERP 9 onwards, this behavior has been modified to treat both attributes as individual
attributes. When both these attributes are specified in any field, ‘Info’ always takes the prece-
dence and ‘Set as’ is ignored. In other words, Info carries more privilege than Set As.

1.2.2 The attribute Format
When the collection is a union of collections, the format object in this collection behaves as a
place holder for the columns. It is mandatory to specify Format attribute in individual collection
when a collection is union of collections.

Example:
[Collection: LedTable]

Collection : DebtorsLedTable, CreditorsLedTable

Format : A, 20

Format : B, 25

Here the A, B act as dummy identifier and the second parameter is width. The collection Debt-
orsLedTable and CreditorsLedTable are defined as follows:

[Collection: DebtorsLedTable]

Type : Ledger

Child Of : $$GroupSundryDebtors

Format : $Name, 15
188

TDL Reference Manual

Format : $StateName, 15

[Collection: CreditorsLedTable]

Type : Ledger

Child Of : $$GroupSundryCreditors

Format : $Name, 15

Format : $StateName, 15

The above code snippet displays a table of two columns. The width of first column is 20 and
second column is 25.

1.2.3 The attribute Sync
The behavior of the attribute Sync of Part definition is changed. The first line of next part is
selected as the default of Sync attribute is now set to No. If the Part further contains parts then the
value of Sync attribute specified at Parent level overrides the value specified at child level.

Example:
[Part : Main Part]

Parts : SubPart1,SubPart 2
Sync : Yes

[Part : Sub Part 1]

Sync : No

[Part : Sub Part 2]

Sync : Yes

As a result of the default of Sync attribute is now set to No. In the above code snippet the Sync
attribute finally has the value as Yes.

1.3 The Attribute – Child Of to support Voucher Type
Child Of attribute is enhanced further to support Voucher Type. Now with this enhancement a Col-
lection of Vouchers of a particular Voucher Type can be constructed. Prior to this release, the
same can be achieved by applying Filters to the Collection. But this approach will improve the per-
formance.
Further the Collection attribute ‘Belongs To’ can be used in addition to ‘Child of’, to construct the
Collection of Vouchers of a particular pre-defined Voucher Type including related user defined
Voucher Types.

Syntax

[Collection: <Coll Name>]

 Type : Vouchers : Voucher Type

 Childof : <String Formula>

 Belongs To : <Logical Value>
 189

TDL Reference Manual
Where <Coll Name> is the name of Collection, <String Formula> can be a formula and should
results to the name of the Voucher Type and Belongs To is an optional attribute and if used it
takes <Logical Value> i.e. either YES or NO as value.

Example: 1
[Collection: Sales Vouchers]

 Type : Voucher Type

 Child of : $$VchTypeSales

The Collection ‘Sales Vouchers’ is a Collection of Vouchers whose Voucher Type is pre-defined
voucher type ‘Sales’

Example: 2
[Collection: Sales Vouchers]

 Type : Voucher Type

 Child of : $$VchTypeSales

 Belongs To : Yes

The Collection ‘Sales Vouchers’ is a Collection of Vouchers whose Voucher Type is pre-defined
voucher type ‘Sales’ or any other user defined Voucher Type whose ‘Type of Voucher’ is ‘Sales’.

1.4 Attribute Modifiers
In TDL, attribute modifiers are classified as Static/Load time or Dynamic/Run-Time modifiers. Use,
Add, Delete, Replace/Change are Static/Load Time modifier. Option, Switch and Local are Run-
Time modifiers. The sequence of evaluation is generalized accross all the definitions in TDL.

Sequence of Attribute Evaluation:
1. Use
2. Normal Attributes
3. Delayed Static/Load Time modifier
4. Dynamic/Run-Time modifier

1.4.1 A New Attribute Modifier – Switch
A new attribute modifier ‘Switch’ has been incorporated from Tally.ERP 9 onwards. This attribute
is similar to the Option attribute but reduces code complexity and improves the performance.

The function Option compulsorily evaluates the conditions for all the options provided in the
description code and applies all which satisfy the evaluation conditions. This means that it is not
always easy to write the code where you just want one of the options to be applied, you have to
make sure that other options are not applied using a negative condition. The new attribute
provider Switch has been provided to support these types of scenarios where evaluation is carried
out only up to the point where the first evaluation process has been cleared.
Apart from this, the Switch can be grouped using a label. Therefore, multiple switch groups can be
created and zero or one of the switch cases would be applied from each such group.
Apart from this, the switch can be grouped using a label, as shown below:
190

TDL Reference Manual

Syntax

Switch : <Label> : <Definition Name> : <Condition>

Switch : <Label> : <Definition Name> : <Condition>

If multiple Switches are mentioned within a single definition, then evaluation will be carried out up
to the point where first condition is satisfied for the given label.

Example: 1
[Field: Sample Switch]

Set as : "Default Value"

Switch : Case1 : Sample Switch1 : ##SampleSwitch1

Switch : Case1 : Sample Switch2 : ##SampleSwitch2

In the above code snippet, multiple switch statements having the same label, zero or one
statement will be executed.

Example: 2
[Field: Sample Switch]

Set as : "Default Value"

;; If none of the condition is TRUE then Field will have Default Value

Switch : Case1 : Sample Switch1 : ##SampleSwitch1

Switch : Case1 : Sample Switch2 : ##SampleSwitch2

Switch : Case2 : Sample Switch3 : ##SampleSwitch3

Switch : Case2 : Sample Switch4 : ##SampleSwitch4

In the above code snippet, multiple switch groups are created and zero or one of the switch cases
would be applied from each such group or label.

1.5 Behavioral Changes for Attribute Modifiers
The behavior of following attributes is enhanced.

1.5.1 Changed precedence of “Use”
The behavior of attribute USE which is used to inherit the properties from other definition has now
changed. Irrespective of their order of specification within a definition, USE will be evaluated first.
In other words, the order in which USE is specified is immaterial as in any case it will be evaluated
first. If multiple USE attributes are specified in a single definition, they are evaluated in the order
of their occurrence.
Example:
[Field: Attr Use1]

Set as : "This shows the changed behavior of 'Use' attribute"

Style : Large Bold

Use : Name Field
 191

TDL Reference Manual
The Field Attr Use1 uses existing Field Name Field. Since Use is having higher precedence over
other attributes, Field Attr Use1 will inherit all the attributes of Name Field. But the style Large
Bold at the Field Attr Use1 will override the inherited Style within the Field Name Field.

1.5.2 Changed behaviour of Delayed Attribute Modifiers “Add/Delete/Replace”
Static/Load Time modifiers like Add, Delete and Replace can be called as Delayed Attribute mod-
ifiers, as they are having least precedence among Delayed Static/Load Time modifiers.

Now these modifiers are generalized across all definitions. Earlier for definitions Report, Key,
Color, Style, Border and Variable, the delayed attributes were applied as their sequence of
appearance in the definition description. If more than one delayed attribute is used under any def-
inition, then attributes will be applied as they appear. This has been done to bring consistency
across the definitions.
Example:
[Report: Test Report]

Form : Form1

Delete : Form

Form : Form2

As a result of the above code snippet, the Report Test Report will not have any Form as Delete is
evaluated last which deletes all the existing forms.

Example:
[Report: Test Report1]

Form : Form1

Delete : Form

Add : Form : Form2

As a result of the above code snippet, the Report Test Report1 will have one Form Form2 since
on deletion of all the Forms, Delayed attribute modifier Add is used to add a new Form Form2.

1.5.3 Enhanced Syntax of Delayed Attribute “Local”
Delayed attribute modifier Local which is used to locally modify the attributes of any child defini-
tion is now enhanced to accept nested Locals.

Syntax

Local : <DefinitionType1> : <DefinitionName1> [: <DefinitionType2> +

 : <Definition Name2> : ...] : <Attribute> : <Value>

Where,
<Definition Type> can be a Form, a Part, a Line or a Field,
<Definition name> is the name of the definition type,
<Attribute> is the attribute of the Definition of which value needs to be altered, and
<Value> is the value assigned to this attribute within the current Report or Form or Part or Line.
192

TDL Reference Manual

Example:
[Report: Custom Report]

Local : Line : TitleLine : Local : Field : AmtField : +

Set as : “Sales Amount”

The Field Amt Field is localized at the Report Custom Report, by using nested locals.

1.6 Partial Attribute Support
Prior to Tally.ERP 9, all descriptions supported partial search on their attribute words, for e.g., Set
as could have been written as Set a, Set or Se, which would allow minimum number of characters
to be present to an extent where another attribute does not start with those characters. This
behavior is now removed as it is not practical to use partial words. But multiple aliases are now
supported to allow meaningful attribute names.

Example:
Set as can be written as Set
Float Bottom Lines at Part Definition can be written as Float
Top Part can be written as Part, Parts or Top Parts

Since these aliases have been introduced, most of the existing TDL will work without any
changes. In case of Partial words/ Non-meaningful words used in any TDL, Tally would throw an
error which needs to be corrected in TDL.

1.6.1 Change in usage of 'BLANK' Keyword in Menu Items
To insert empty line between Menu Items, BLANK keyword was used. Also Item Attribute without
any "Value" used to be considered as BLANK prior to Tally.ERP 9. For consistency in TDL coding,
the later is now disallowed. Only BLANK keyword can now be used to indicate an empty Menu
Item.

2. Enhanced Special Symbols
In Tally.ERP 9 some new symbols are introduced and the behaviour of the definition modifier ‘#’ is
enhanced.

2.1 Multi – line commenting in TDL source code using /* and */
Multi-line commenting is a new feature in this release which renders the TDL code more user-
friendly and easy to maintain. A simple Multi-line comment would look like:
/*
<Comment Line 1>
<Comment Line 2>
*/
 193

TDL Reference Manual
2.2 Extension of modifying definitions using #
The scope of modifying definitions using # is extended to System Formula Definition. Now, you
can alter the value of the existing system formula using #. This helps to improve the performance
with optimized formulae.

Example:
[#System: Formula]

NameWidth : 40

MaxNameWidth : 60

The above code alters the existing System Formula to change the values specified to Formulae
Name Width and Max Name Width in DefTDL

2.3 ‘*’ (Reinitialize) Definition modifier
The definition modifier “*” overwrites the existing content of definition. The “*” modifier is very
useful when there is a need to completely replace the existing definition content with a new code.

Syntax

[*<Definition Type> : <Definition Name>]

Example:
[Field: Sample ReInitialize]

Info : "Original Value"

Style : Large Bold

Color : Blue

[*Field: Sample ReInitialize]

Info :"ReInitialized-All the attribute values deleted +

 & newly defined"

Lines : 1

3. Method Formula Syntax with Relative Object Specification
The ‘$’ operator has been enhanced with a new capabilities. This allows direct access to any
object method including its sub-collections to any level with a dotted notation framework. Using
the new capability, there is no need to repeat a line over a sub-collection to access it. The values
from any object anywhere can be accessed without making the object as the current object in
context. Suffixing of PrimaryObjType:ObjNameFormula is still supported for backward compatibil-
ity. In cases where both are specified; the enhanced new primary object specification will be con-
sidered.
The earlier syntax to access a Method was:

$MethodName OR $MethodName:PrimaryObjType:ObjNameFormula
194

TDL Reference Manual

The enhanced method formula Syntax is introduced to support access out of the scope Primary
Object and to access Sub object at any level using (.) dotted notation with index and condition
support.
The enhanced syntax is:

$<PrimaryObjectSpec>.<SubObjectPathSpec>.MethodName

Where,
<PrimaryObjectSpec> can be (<Primary Object Type Keyword>, <Primary Object Identifier
Formula>)
<SubObjectPathSpec> is given as CollectionName [<Index Formula>, [<Condition>]]
<MethodName> refers to the name of the method in the specified path.
<Index Formula> should return a number which acts as a position specifier in the Collection of
Objects satisfying the given <condition>.

Example: Following are evaluated assuming Voucher as the current object
1. To get the Ledger Name of the first Ledger Entry from the current Voucher,

 Set as : $LedgerEntries[1].LedgerName

2. To get the amount of the first Ledger Entry on the Ledger Sales from the current voucher,
 Set as : $LedgerEntries[1,@LedgerCondition].Amount

 LedgerCondition : $LedgerName = “Sales”

3. To get the first Bill Name of the first Ledger entry on the Party Ledger from the current
voucher,

 Set As : $LedgerEntries[1,@@LedgerCondition]+

 .BillAllocations[1].Name

 LedgerCondition : $LedgerName = @@InvPartyName

4. To get the OpeningBalance of the first Bill for the Party, Acme Corp,
 Set As : $(Ledger,@@PartyLedger).BillAllocations[1]+

 .OpeningBalance

 PartyLedger : “Acme Corp”

Primary Object specification is optional. If not specified, current object will be considered as
primary object. Sub-Collection specification is optional. If not specified, methods from the current
or specified primary object will be available. Index specifies the position of the Sub-Object to be
picked up from the Sub-Collection. Condition is the filter which is checked on the objects of the
specified Sub-Collection.

<Primary Object Identifier Formula>, <Index Formula> and Condition can be a value or for-
mula.<Index Formula> can be any formula evaluating to a number. Positive Number indicates a
forward search and negative number indicates backward search. This can also be a keyword First
or Last which is equivalent to specifying 1 or -1 respectively.
If both Index and Condition is specified, the index is applicable on the Object(s) which satisfy the
condition so one gets the nth Object which clears the condition. Let’s say for example, if the Index
 195

TDL Reference Manual
specified is 2 and Condition is Name = “Sales”, then the second object which matches the name
Sales will be picked up.

Primary Object Path Specification can either be relative or absolute. Relative Path is referred
using empty parenthesis () or Dotted path to refer to the Parent object relatively. SINGLE DOT
denotes the current object, DOUBLE DOT the Parent Object, TRIPLE DOT the Grand Parent
Object and so on within an Internal Object. Absolute Path refers to the path in which the Primary
Object is explicitly specified.
To access the Methods of Primary Object using Relative Path following syntax is used:

$().MethodName or $..MethodName or $… MethodName

Example:
Being in the context of LedgerEntries Object within Voucher Object, the following has to be written
to access the Date from its Parent Object which is the Voucher Object.
 $..Date

To access the Methods of Primary Object using Absolute Path :
 $(Ledger, “Cash”).OpeningBalance

4. Enhancements – Object Association
In TDL, Interface object exists in context of any data object. Every Interface object needs to be
associated with some data object. In the absence of any explicit object association, Interface
object will get associated with Anonymous object. TDL programmer can explicitly associate
Interface objects like Report, Part, Line and Field with data object. In Tally.ERP 9 Object associa-
tion become more natural and simpler.

4.1 Report Level Object Association
A Report normally will be associated with a data object, which it gets from the previous Report or
will be associated with anonymous object. From Tally.ERP 9 onwards the syntax for association
has been enhanced to override the default association as well. The Report attribute ‘Object’ has
been enhanced to take an additional optional value ‘ObjectIdentifierFormula’.

Syntax

Object: <ObjectType> [: <ObjectIdentifierFormula>]

Where,
<ObjectType> is type of any Primary Object and
<ObjectIdentifierFormula> is an optional value and is any formula which evaluates to name of
Primary Object.

Example: 1 – Prior to Tally.ERP 9
[#Form: Sales Color]

Delete : Print

Add : Print: New Sales Format
196

TDL Reference Manual

[Report: New Sales Format]

Object : Voucher

Default Sales color Form is modified to have new print format ‘New Sales Format’. This Report
gets the voucher object from previous Report.

Example: 2 – In Tally.ERP 9
[Report: Sample Report]

Object : Ledger: “Cash”

Ledger ‘Cash’ is associated to the Report ‘Sample Report’. Now components of ‘Sample Report’
by default inherit this ledger object association.

4.2 Part Level Object Association
By default, Part inherits the Object from the Report/Part/Line. This can be overridden by two
ways.

4.2.1 Using ‘Object’ attribute specification in Part definition.

Syntax: Prior to Tally.ERP 9

 Object : <SupplierCollection> : <SeekTypeKeyword> [: <SeekCondition>]

Where,
<SupplierCollection> is the name of the Collection of secondary Objects,
<SeekTypeKeyword> can be First or Last which denotes the position index and
<SeekCondition> is an optional value and is a filter condition to the supplier collection.

Example: Part in the context of Voucher Object
[Part: Sample Part]

Line : Sample Line

Object : InventoryEntries:First:@@StkNameFilter

Scroll : Vertical

[System: Formula]

StkNameFilter: $StockItemName = "Tally Developer”

The first inventory entry which has stock Item “Tally Developer” is associated with Part ‘Sample
Part’.

4.2.2 Using ‘Object Ex’ attribute specification in Part definition
From Tally.ERP 9 onwards, data object can be associated to Part by using new attribute Object
Ex. Now even Primary Object can also be associated to a Part, which was not possible in the
earlier Part level data object association. Also data Object associated to some other Interface
Object can also be associated to a Part. This aspect will be elaborated in the section “Object
Access via Interface Object”.
 197

TDL Reference Manual
Syntax: In Tally.ERP 9

Object Ex: <Method Formula Syntax>

Where,
<Method formula syntax> is, <Absolute Spec>.[<SubObjectSpec>]
Absolute Specification is
(<Object Type>, <Object Identifier Formula>), If only Absolute Spec is given then it should end
with dot (‘.’).
Sub Object Specification is CollectionName[Index,<Condition>]

Example: 1
[Part: Sample Part]

Object Ex : (Ledger, "Customer 1").

Ledger object “Customer 1” is associated to the Part ‘Sample Part’. Since only absolute specifica-
tion used, the Object specification is ends with ‘.’.

Example: 2
[Part: Sample Part]

Object Ex : (Ledger,"Customer").BillAllocations[1,@@Condition1]

[System: Formula]

Condition1: $Name = "Bills 2"

Secondary Object ‘Bill Allocations’ is associated with Part ‘Sample Part’.

4.3 Line Level Object Association
An object can associated to a Line by Part attribute “Repeat’. Now Part attribute ‘Repeat’ is
enhanced to support the following.

a. Extraction of collection from any Data object
Extraction of collection from Interface Object associated Data object. This aspect will be elabo-
rated in the section “Object Access via Interface Object”.

4.3.1 Repeat Syntax: Prior to Tally.ERP 9
Repeat:<Line Name>: <Coll Name>: [<Supplier Coll>+

 :<SeekTypeKeyword>:<SeekCondition>]

Where,
<Coll Name> is the name of the Collection and if that Collection is present in the one level down
of the object hierarchy then Supplier Collection needs to be mentioned.
<SupplierCollection> is the name of the Collection of secondary Objects,
<SeekTypeKeyword> can be First or Last which denotes the position index and
<SeekCondition> is an optional value and is a filter condition to the supplier collection.
198

TDL Reference Manual

Example: Part in the context of Voucher Object
[Part: Sample Part]

Line : Sample Line

Repeat :Sample Line:Bill Allocations:Ledger Entries:First:+

 @@LedFormula

[System: Formula]

LedFormula : $LedgerName = “Customer”

The Line ‘Sample Line’ is repeated over Bill Allocations of first object ledger entries which
satisfies the given condition

4.3.2 In Tally.ERP 9 – Repeat Syntax
Repeat: Line Name: MethodFormulaSyntax[:SupplierCollection: +

 SeekTypeKeyword: SeekCondition]
Where,
<MethodFormulaSyntax> is <Absolute Spec>.<SubObjectSpec>
<Absolute Spec> is (<Object Type>, <Object Identifier Formula>)
<Sub Object Spec> is CollectionName[Index,<Condition>]
and Supplier Collection syntax is provided just for the backward compatibility.

Example:
[Part: Sample Part]

Line : Sample Line

Repeat : Sample Line: (Ledger, “Customer”).BillAllocations

4.4 Field Level Object Association
By default inherits from the parent line or Field (if field inside a field). This cannot be overridden.
However Field also allows Object specification syntax. This association if specified acts as the
‘Secondary Context Object’ for the Field. During any formula evaluation, if the formula / method
fail in the context of primary object, secondary object is tried then.

5. Enhancements – Object Access via Interface Object
From Tally.ERP 9 onwards, data objects in association with Interface objects can be accessed
using the new Interface object access syntax. Data object which is associated to Interface Object
can be accessed with the following 2 step procedure.

1. Identifying Part and Line Interface object with ‘Access Name’
2. Value/Collection Extraction

5.1 Identifying Part and Line Interface object with ‘Access Name’
Part and Line can be identified by unique access name. For this purpose a new attribute ‘Access
Name’ is introduced for Part and Line definition.
 199

TDL Reference Manual
Syntax

Access Name: Access Name Formula

Where,
<Access Name Formula> can be a formula and evaluated to string.

Example: 1 – Access Name at Part Definition
[Part: Sample Part]

Line : Sample Line1

Access Name: “Sample Part”

Example: 2 – Access Name at Line Definition
[Line: Sample Line]

Field : Sample Fld1, Sample Fld2

Access Name: "Repeated Line" + $$String:$$Line

When Line ‘Sample Line’ is repeated over a collection, every Line is identified by unique Access
Name.

5.2 Value Extraction
Once Part and Line Interface objects are able to uniquely identify by ‘Access Name’, then data
object can be accessed by either new function $$ObjectOf or by ‘New method formula syntax’.

5.2.1 Value Extraction by function $$ObjectOf
Methods of data object which is associated to Interface Object can be extracted by using the
function $$ObjectOf.
Syntax

$$ObjectOf : <DefinitionType> : <AccessNameFormula> : <EvaluationFormula>

Where,
<DefinitionType> may be Part or Line,
<AccessNameFormula> is a string through which a Part or Line can be uniquely identified, and
<EvaluationFormula> is a method that need to evaluated.

Example:
Line ‘Sample Line’ has Access Name as ‘Sample Acc Name’ and in association with Ledger
Object.
[Field : Sample Field]

Set as : $$Objectof:Line:”Sample Acc Name”:$Name

Field ‘Sample Field’ displays the name of the object Ledger which is associated with a Line
whose access name is “Sample Line Acc Name”.

200

TDL Reference Manual

5.2.2 Value Extraction by using new method formula
Methods of data object which is associated to Interface Object can also be extracted by using new
method formula. With this approach sub object’s methods can be extracted.

Example:
Line ‘Sample Line’ has Access Name as ‘Sample Acc Name’ and in association with Ledger
Object.
[Field: Sample Field]

Set as : $(Line,“MyLineAccessName”).BillAllocations[1].OpeningBalance

Field ‘Sample Field’ displays the name opening balance of a ledger which is associated with a
Line whose access name is “Sample Line Acc Name”.

5.2.3 Repeat Syntax Using Access Name
Collection inside the data object which is associated to Interface Object can be extracted by using
new method formula.

Syntax - Enhanced Repeat

Repeat: Line Name: MethodFormulaSyntax[:SupplierCollection: +

 SeekTypeKeyword: SeekCondition]
Where,
<MethodFormulaSyntax> is <Absolute Spec>.<SubObjectSpec>
 Absolute Spec is (<Object Type>, <Object Identifier Formula>)
Sub Object Spec is CollectionName[Index,<Condition>]
and Supplier Collection syntax is provided just for the backward compatibility.

Example:
Part having access name ‘MyPartAccessName’ is under the context of Voucher Object
We can repeat a line “Sample Line” over Inventory Enries of the Voucher Object which is associ-
ated with Part having the access name “MyPartAccessName”
[Part: Sample Part]

Repeat : Sample Line:(Part, “MyPartAccessName”).InventoryEntries

6. Bracket support in TDL
Prior to Tally.ERP 9, the usage of TDL language token bracket (‘(’ and ‘)’) was restricted as math-
ematical operator only. From this release onwards brackets can be used in the following scenar-
ios.

1. During the function call to enclose the function parameter
2. In the language syntax for nesting formulas
3. As a Mathematical Operator
 201

TDL Reference Manual
6.1 During the Function Call
Prior to Tally.ERP 9, when a parameter for function requires expression and that expression
contains any language token then the TDL programmer is forced to replace the expression by a
formula. This can now be achieved by enclosing the expression in a bracket. The expression
inside the bracket is evaluated first and the result is used as the parameter for the function.
Nesting can be performed up to any level.
Brackets can also be used in the places where function parameter expects identifier or constant
value.
Example: 1
The Field ‘Sample Fld’ displays the first 5 characters of the currently loaded Company’s email
address.

Prior to Tally.ERP 9
In this case, First parameter to the function ‘StringPart’ is a expression contains language token
‘:’. So a formula needs to be created.

[Field: Sample Fld]

Set As : $$StringPart:@CmpEmailAddress:0:5

CmpEmailAddress : $Email:Company:##SVCurrentCompany

In Tally.ERP 9
[Field: Sample Fld]

Set As :$$StringPart:($Email:Company:##SVCurrentCompany):0:5

Example: 2
If the last object in the collection Ledger is a Sundry Creditor then the Field Sample Fld will have
logical value Yes else No.

Prior to Tally.ERP 9
In this case, the condition contains language token ‘:’ and constant value ‘-1’. So formulas needs
to be created.
[Field: Sample Fld]

Set as :$$CollectionField:@@GroupCheck:@@IndexPosition:Ledger

[System: Formula]

GroupCheck : $Parent:Ledger:$Name = $$GroupSundryCreditors

IndexPosition : -1

In Tally.ERP 9
[Field: Sample Fld]

Set As : $$CollectionField:($Parent:Ledger:$Name = +

 $$GroupSundryCreditors):(-1):(Ledger)
202

TDL Reference Manual

6.2 In the language syntax for nesting formulas
Prior to Tally.ERP 9, whenever an expression is a part of language syntax then language tokens
are not permitted. This restriction leads to the necessity of additional formulas even when the
formulas are not used more than once. With this enhancement, expressions can be used in
language syntax by enclosing them in brackets.
Brackets can also be used in the places where attribute value expects identifier or constant value.

Example: 1
If the given condition is satisfied then the Field ‘Sample Fld’, will display “Cash Accounts”

Prior to Tally.ERP 9
In this case, the condition contains language token ‘:’. So a formula needs to be created.
[Field: Sample Fld]

 Set By Condition : @IsLedgerIsCash : "Cash Accounts"

 IsLedgerIsCash : ($Name:Ledger:##SVLedger) = "Cash"

In Tally.ERP 9
[Field: Sample Fld]

 Set By Condition :($Name:Ledger:##SVLedger)= "Cash" : "Cash Accounts"

Example: 2
First parameter for repeat attribute is using bracket for identifier.
[Part: Sample Part]

Line : Sample Line

Repeat : (Sample Line) : My Collection

6.2.1 As a Mathematical Operator
In TDL, brackets are used as mathematical operator to set the precedence of evaluation.

Example:
If parentheses are not used then Field ‘Sample Fld’ will display 26 otherwise 44.
[Field: Sample Fld]

Set As : 4 * (5 + 6)

7. Action Enhancements
Some of the existing actions are enhanced to support the multiline selection capabilities. Several
new actions are also introduced in TDL.
 203

TDL Reference Manual
7.1 Enhancements in Key Actions
Key action is enhanced to perform various operations on multiple lines. For example, multiple
vouchers can be selected/ unselected and various actions such as deletion, modification, etc. can
be performed on the selected vouchers only. To achieve this, two attributes Scope and Selectable
are introduced. Scope attribute is introduced in Key definition and Selectable attribute is available
at Part and Line definition.

7.1.1 The attribute Scope
In Key definition, a new attribute ‘Scope’ is introduced, through which scope for the Action(s) can
be specified.
Syntax

Scope : <Scope Keyword>

<Scope Keyword> can have any of the following possible values: - Current Line/ Line, All Lines,
Selected Lines, Unselected Lines and Report

7.1.2 The attribute Selectable
Selectable attribute can be applied to Part and Line definition.

Part Definition
At Part level, the attribute ‘Selectable’ indicates that the lines owned by this Part are selectable or
not and the default value for the same is Yes.

Syntax

Selectable : <Logical Formula>

Line Definition
At Line level, the attribute ‘Selectable’ indicates that the line (or lines within this line) is selectable
or not, The default value of attribute Selectable for repeated lines is ‘Yes’ and for non-repeated
lines it is ‘No’. The value is also inherited from Parent Part/Line and the same can be overridden
at Line level.

Syntax

Selectable : <Logical Formula>

<Logical Formula> must return the value as Yes or No

Following actions have been introduced/ changed.
Toggle Select – Selects / deselects a line
Select All – Selects all the lines within a part
Unselect All – Deselects all the lines within a part
Invert Selection – Selects all the unselected lines within a part
Modify Object – Modifies the values stored in the methods of an Object
204

TDL Reference Manual

The behaviour of existing actions Cancel Object, Delete Object, Remove Line and Multi Field Set
have been modified to obey the scope specified in the Key description.

The actions Print Report, Upload Report, Email Report and Export Report can be executed now
on the Selected Line scope. In the resultant report, the selected lines will be available as objects
in the collection “Parameter Collection”. This collection can be used in the called report for dis-
playing data.

Actions like Cancel Object, Audit Object and Delete Object are enhanced to work with Report
scope.

7.2 New Actions
Following new actions are introduced in the language:

7.2.1 Modify Object
Modify Object is enhanced to alter a method of an object at any level. Modify Object action also
supports modifying multiple values of an object. Multiple values can be specified as a comma
separated list of <Method Name> : <Value> pairs.

Syntax

Action : Modify Object : <PrimaryObjectSpec>.<SubObjectPathSpec> +

 .MethodName : value>[,Method Name: <value> , …]+

 [,<SubObjectPathSpec>.MethodName :<value>, …..]

The specifications given for <PrimaryObjectSpec>, <SubObjectPathSpec>, MethodName remain
same as described in the New Method syntax section.

A single Modify Object action cannot modify Multiple Objects, but can modify multiple values of an
Object.

Modify Object is allowed to have Primary Object Specification only once i.e., for the first value.
Further values permissible are optional Sub Objects and Method Specification only.

Sub Object Specification is optional for second value and onwards. If Sub Object Specification is
specified, the context is assumed to be the Primary Object specified for the first value. In absence
of Sub Object Specification, the previous value specification's Leaf Object is considered as the
context.

Example: 1
[Key: Alter My Object]

Key : Ctrl + Z

Action : Modify Object:(Ledger,"MyLedger").BillAllocations +

 [First,$Name="MyBill"].OpeningBalance +
 205

TDL Reference Manual
 : 100,..Address[Last].Address : "Bangalore"

Existing ledger My Ledger is being altered with new value for opening balance of existing bill
bearing Name as MyBill and last line of Address. Key Alter My Object can be attached to any
Menu or Form clicking which the above will be altered.

Example: 2
[Key: Alter My Object]

Key : Ctrl + Z

Action : Modify Object :(Ledger,"MyLedger").BillAllocations[1]+

 .OpeningBalance : 1000, Name:”My New Bill”,..Address[First]+

 .Address : "Hongasandra Bangalore", +

 Opening Balance : 5000

Existing ledger My Ledger is altered with new values for opening balance for existing bill, opening
balance of ledger and address. Key Alter My Object can be attached to any Menu or Form.

Example: 3
[Key: Alter My Object]

Key : Ctrl + Z

Action : ModifyObject : LedgerEntries[1].BillAllocations[1].Name : +

 “Test1”, Amount :“1000.00”, ..BillAllocations[2].+

 Name : “Test2”, Amount : “2000.00”, ().Date : “1.4.08”

In a Voucher context, Key Alter My Object, alters Name, Amount and Date methods of Sub object
Bill Allocation in one line.

Action Modify Object in a Menu Definition
In Menu definition, a button which has action Modify Object can be added.
Example:
[#Menu: Gateway of Tally]

Add : Button : Alter My Object

While associating a key with action Modify Object, following points should be considered:
Since menu does not have any Data Objects in context, specifying Primary Object
becomes mandatory.
Since Menu cannot work on scopes like Selected Lines, Unselected Lines, etc., scopes
specified are ignored.
Any formula specified in the value is evaluated assumes Menu Object as requestor.
Even Method values pertaining to Company Objects can be modified.
A button can be added at the menu to specify the action Modify Object at the Menu level
206

TDL Reference Manual

7.2.2 Action – Set Object Values
The new action introduced is similar to the action modify object. The action Set Object values
work only in the Edit mode of a Report as it uses current context. This action changes the values
of the object from current context as specified.
Syntax

Action: Set Object Values: <SubObjectPathSpec>.<Method Name> +

 : <Method Value>
Where,
<SubObjectPathSpec> is given as CollectionName [<Index Formula>, [<Condition>]]
<MethodName> refers to the name of the method in the specified path and
<Method Value> is the value to be set for the <Method Name>.
This action alters the current object in memory. When the Primary object is saved the changes will
be updated in Tally database.

Example:
[Key : My Key]

Action :Set Object Values : Opening Balance : ($$AsAmount : 10)

7.2.3 Action – Backup Company
Backup Company action allows to take the backup of multiple companies.
Syntax

Backup Company : <parameter sep char> : <String Formula>

Where
<Parameter Sep Char> is a character used to separate parameter.
<String Formula> must evaluate to the value in the following order seperated by the <Parameter
Sep Char>:

<Destination> <Source> <Company Name> <Company Number>

<Destination> is the path where the backup file is to be stored.
<Source> is the path from where the company data is to be taken for backup
<Company Name> is name of the Company
<Company Number> is number of the company
These four values must be specified for each company. These can be repeated for multiple
companies
.
Example: Single Company
[Button : My Cmp Bk Button]

Title : BackUp Cmp

Action : BackUp Company: “,” :“C:\,C:\Tally.ERP 9\Data,Global +

 Enterprises,10037”

Key : Alt + G
 207

TDL Reference Manual
Example: Multiple Company
[Button : My Cmp Bk Button]

Title : BackUp Cmp

Action : BackUp Company : “,” : “C:\,C:\Tally.ERP 9\Data,+

 Global Enterprises,10037,C:\,C:\Tally.ERP 9\Data,+

 TDL Demo,10027”

 OR
[Button : My Cmp Bk Button]

Title : BackUp Cmp

Action : BackUp Company : “,” : @@MyCmpFor

[System :Formula]

MyCmpFor : “C:\,C:\Tally.ERP 9\Data,Global Enterprises,10037, +

 C:\,C:\Tally.ERP 9\Data,TDL Demo,10027”

7.2.4 Action – Restore Company
This action allows to restore multiple companies in one go.
Syntax

Restore Company : <parameter sep char> : <String Formula>

Where
<Parameter Sep Char> is a character used to separate parameter.
<String Formula> must evaluate to the value in the following order seperated by the <Parameter
Sep Char>:

<Destination> <Source> <Company Name> <Company Number>

<Destination> is the path where the backup file is to be stored.
<Source> is the path where the backup file is available
<Company Name> is name of the Company
<Company Number> is number of the company
These four values must be specified for each company.These can be repeated for multiple com-
panies.

Example: Single Company
[Button : My Cmp Res Button]

Title : Restore Cmp

Action : Restore Company : “,” : “C:\Tally.ERP 9\Data,C:\,+

 Global Enterprises,10037”
208

TDL Reference Manual

Example: Multiple Company
[Button : My Cmp Res Button]

Title : Restore Cmp

Action : Restore Company : “,” : “C:\Tally.ERP 9\Data,C:\,+

 Global Enterprises,10037,C:\Tally.ERP 9\Data,C:\,+

 TDL Demo,10027”

 OR
[Button : My Cmp Res Button]

Title : Restore Cmp

Action : Restore Company : “,” : @@MyCmpFor

[System :Formula]

MyCmpFor:“C:\,C:\Tally.ERP 9\Data,Global Enterprises,10037, +

 C:\,C:\Tally.ERP 9\Data,TDL Demo,10027”

7.2.5 Action – ChangeCrypt Company
This action allows to change the TallyVault Passward of multiple companies in one click.
Syntax

ChangeCrypt Company : <parameter sep char> : <String Formula>

Where
<Parameter Sep Char> is a character used to separate parameter.
<String Formula> must evaluate to the value in the following order seperated by the <Parameter
Sep Char> :

<Company Data Folder> <New Tally Vault Key> <Old Tally Vault Key> +

<Company Name> <Company Number>

<Company Data Folder> is the path of the company data folder
<New Tally Vault Key> is the new password of the company
<Old Tally Vault Key>is the old password of the company
<Company Name> is name of the Company
<Company Number> is number of the company
These five values must be specified for each company. These can be repeated for multiple com-
panies.

Example:
[Button : Chg Pwd]

Title : Change Pwd

Key : Alt + b

Action : ChangeCrypt Company: “,” : ”C:\Tally.ERP 9\Data\10037, +

 NewPwd,OldPwd,Global Enterprises,10037”
 209

TDL Reference Manual
7.2.6 Action – Browse URL
A New action Browse URL has been introduced. It is used to open web browser with any URL
formula passed as a parameter.
Syntax

Action: Browse URL: <URL>

Where,
<URL> is any link to a web site

Example: Field acting as a hyperlink
[Key: Execute Hyperlink]

Key : Left Click

Action : Browse URL : “www.tallysolutions.com”

[Field: Hyperlink Company]

Color : Blue

Border : Thin Bottom

Key : Execute Hyperlink

Set as : "Tally Solutions Pvt. Ltd"

Local : Key : Execute Hyperlink : Action : Browse URL: +

 http://www.tally.co.in

7.2.7 Action – HTTP Post
A new Key/ Button Action HTTP Post has been introduced which will help in exchanging data with
external applications using web services. In other words, HTTP Post Action can be used to submit
data to a server over HTTP and gather the response. This will enable a TDL Report to perform a
HTTP Post to a remote location.

This Action will be discussed in detail under the topic HTTP XML Collection.

7.2.8 Action – Refresh TDL
A new Key/ Button Action Refresh TDL has been introduced which allows the TDL programmer
to reload the active TDL Files without having to restart Tally.
Syntax

Action: Refresh TDL

Existing Action Register Tally has been removed for generalization which is now
replaced with Action Browse URL.
210

TDL Reference Manual

Example: Field acting as a hyperlink
[Key: Refresh TDLs]

;; Any Key can be assigned if Report already have F5 assigned
Key : F5

Action : Refresh TDL

;; Refresh TDL will work from any Report
[#Form: Default]

Key : Refresh TDLs

8. Events introduced
Tally.ERP 9 Series A Release 1.0 onwards, actions can also be carried out based on certain
events. On encountering these events, the given action or list of actions will be executed.
Currently, two events have been introduced in Tally.ERP 9:

On: Form Accept
On: Focus

8.1 Event – On Form Accept
A new event On:Form Accept is introduced that can be specified within Form Definition. A list of
actions can be executed when the form is accepted which can also be based on some condition.
Syntax

 On: Form Accept: <Condition>: Action: Action parameters

Where,
<Condition> should return a logical value.
<Action> any one of the actions
<Action Parameters> parameters of the actions specified.

Example:
[Form : TestForm]

On : FormAccept:Yes:HttpPost:@@SCURL:ASCII:SCPostNewIssue:+

 SCNewIssueResp

8.2 Event – On Focus
A new Event On: Focus is introduced which can be specified within definitions Part, Line and
Field. When Part, Line or Field receives focus, a list of actions get executed which can also be
conditionally controlled.

Syntax

On : Focus : Condition : Action : Action parameters
 211

TDL Reference Manual
<Condition> should return a logical value.
<Action> any one of the actions.
<Action Parameters> parameters of the actions specified.
Since On : Focus is a list type attribute as many actions can be specified which will be executed
sequentially.

Example:
[Part: TestPart1]

On : FOCUS : Yes : HTTP Post : @@MyUrl : ASCII : ReqRep, RespRep

[Part: TestPart2]

On : FOCUS : Yes : CALL : SCSetVariables : $$Line

9. User Defined Function
This is one of the breakthrough changes which has taken place at the platform level. We all know
that TDL is a definition language which provides capability for rapid development. But now TDL is
procedural as well. With the introduction of Functions/Procedures as a part of Tally.ERP 9 family
the TDL capabilities have reached a new dimension.

This will help the application programmers to develop their own functions for achieving business
functionality. Their will be a decrease in platform dependency for particular business function. The
resultant would be faster development cycles for business modules.
The creation and usage of functions is discussed in detail in the section III “User Defined
Functions for Tally.ERP 9”.

10. New Functions
Following functions are introduced in the Language:

10.1 $$IsObjectBelongsTo
Existing function IsBelongsTo, will only check if the current object belongs to a specified object.
The new function IsObjectBelongsTo has been introduced to provide more explicit control in the
hands of the programmer by allowing him to specify the object type and name in addition to
parentage against which it needs to be checked. This function is very useful in the context of sum-
marized objects as they are not of any native type and are just aggregation of objects. This
function allows an easy link back into the native object type and walk up the chain. It is very useful
when creating hierarchical reports on summarized collections.

Syntax

$$IsObjectBelongsTo:ObjType:ObjName:BelongsToName

Where,
<ObjType> denotes the Type of the Object,
<ObjName> denotes Name of the Object and
212

TDL Reference Manual

<BelongsToName> denotes the name of the object type.

Example:
Whether Group North Debtors belongs to Group Sundry Debtors or not directly or indirectly can
checked using the following statement.

 $$IsObjectBelongsTo:Group:”North Debtors”:$$GroupSundryDebtors

10.2 $$NumLinesInScope
Tally.ERP 9 onwards, various operations can be performed on multiple lines. To know how many
lines were considered for any operation, Function NumLinesInScope has been introduced.

Syntax

$$NumLinesInScope:<ScopeKeyword>

where Scope Keyword can be All Lines, Selected Lines, UnSelected Lines, Current Line/Lines.

Example:
[Field: Sample Fld]

Set As : $$NumLinesInScope:SelectedLines

Field Sample Fld, displays total number of selected lines in the Part to which it belongs to.

11. Enhanced Collection Capabilities
Collection, the data processing artifact of TDL provides extensive capabilities to gather data not
only from Tally database but also from external sources using ODBC, DLLs, and HTTP and so on.
A set of new capabilities have been added to Collection which provides far more flexibility and
power in the hands of the TDL programmer. This will allow writing significantly complex reports
with ease and still delivering enhanced performance with high volume of data.

11.1 Aggregation and Reporting
Tally.ERP 9 onwards, Collection has been enriched with the following capabilities.

Data Roll up/ Summarization
Collection re-use, extraction and chaining
Indexed or Searchable Collection on TDL defined keys

All the extract values now can be achieved using GroupBy, hence the $$Extract
functions has been removed in Tally.ERP 9 . Eg: $$ExtractGrpVal, $$ExtractLedVal
etc.
 213

TDL Reference Manual
Following attributes under Collection have been introduced to achieve the above.

11.1.1 Source Collection
In the context of the summary collection i.e. to achieve Data roll up, this attribute is mandatory.
Source Collection specifies the collections to be used for source data. Multiple Source Collections
can be used which can either be specified as a comma separated list or can be listed in several
lines.

Syntax

Source Collection : <Collection name>, <Collection Name> …

Where,
<Collection Name> is any predefined collection, the methods and sub objects of which are
available to the current collection for further processing

Example:
[Collection: Vouchers Collection]

Type : Voucher

[Collection: Summary Collection]

Source Collection : Vouchers Collection

The ‘Summary Collection’ uses ‘Vouchers Collection’ as source data.

11.1.2 Walk
Attribute Walk allows specifying further elements to walk on the source. Walk is optional and if not
specified, the methods pertaining to source object only are available to be used. Walk can be
specified to any depth for within the source object. This gives enormous flexibility and power. The
Walk list has to be specified in the order in which they occur in the source object.

Syntax

Walk : <Sub-Object Type/ Sub-Collection>[, <Sub-Object Type/ +

 Sub-Collection> …]

Where,
<Sub–Object Type/Sub-Collection> is the name of the Sub Objects/ Sub Collection.

Example:
[Collection: Vouchers Collection]

Type : Voucher

[Collection: Summary Collection]

Source Collection : Vouchers Collection

Walk : Inventory Entries
214

TDL Reference Manual

In the Summary Collection, by saying Walk : Inventory Entries, only methods within Inventory
Entries Object are available to the current collection. In case, Objects pertaining to Batch Alloca-
tions are required, then Walk can be written as
 Walk : Inventory Entries, Batch Allocations

wherein all the methods within Batch Allocations will be available to the current collection.

11.1.3 By
Attribute By is mandatory and it allows to specify the criteria based on which the aggregation is
done. In other words, it works like GROUP – BY. Aggregation criteria can be one or more.
Syntax

By : <Method-Name>: <Method-Formula>

Example:
[Collection: Vouchers Collection]

Type : Voucher

[Collection: Summary Collection]

Source Collection : Vouchers Collection

Walk : Inventory Entries

By : PartyLedgerName : $LedgerName

By : StockItemName : $StockItemName

In ‘Summary Collection’, Partywise Stock Items are clubbed on which Aggregation i.e., Sum/Min/
Max operations would be performed.

11.1.4 Aggr Compute
Aggr Compute attribute is used for aggregation purpose based on the criteria(s) specified with
attribute By. Aggregation can be done to find Sum, Minimum or Maximum of the Method within
the Grouped Method. The Method on which Aggregation has to be performed can be of Data
Type Number, Quantity, Rate or Amount.

Syntax

Aggr Compute : <Method-Name> : <Aggr-Type> : <Method-Formula>

Where
<Method–Name> refers to the method where the result can be stored and referred to later.
<Aggr–Type> takes operation to be performed on the given method within the given criteria i.e.,
Sum, Max or Min.
<Method–Formula> should be evaluated to method names on which Aggregation operation
needs to be performed.

Example:
[Collection: Vouchers Collection]

 Type : Voucher
 215

TDL Reference Manual
[Collection: Summary Collection]

 Source Collection : Vouchers Collection

 Walk : Inventory Entries

 By : PartyLedgerName : $LedgerName

 By : StockItemName : $StockItemName

 Aggr Compute : BilledQty : Sum : $BilledQty

BilledQty method retains the result of Aggregation i.e., Summation of method BilledQty for a
StockItem within a particular Party.

11.1.5 Compute
Apart from the ones used in By and Aggr Compute attributes, none of the other methods can be
accessed unless they are declared explicitly. One of the ways of declaring the required methods
is by listing them using attribute Compute

Syntax

Compute : <Method-Name> : <Method-Formula>

Example:
 Compute : Date : $Date

Method Date is being declared and made available for subsequent use.

11.1.6 Fetch
Another way of declaring required methods is by listing them in Fetch attribute. The only differ-
ence here is that the method names of the Objects within this collection has to be referred by the
same name as in the Object.

Syntax

Fetch : <Existing-Method-Name-in-Source> …

Where,
<Existing – Method Name in source> refers to the methods of the source collection.

Example:
Fetch : Date, Narration

is equivalent to writing

Compute : Date : $Date

Compute : Narration : $Narration

Fetch using wildcard characters:
The two wild characters can be used in Fetch attribute * and ?.
216

TDL Reference Manual

* is used To fetch all the methods and collections of the current object in context.
? is used To fetch all the methods of current object in context.

Example:
To fetch all methods of current Object within Walk.

Fetch : ?

To fetch all methods and collection of current Object within Walk.
Fetch : *

To fetch the methods StockItemName,BilledQty,Amount and all the method of collection
Batch Allocation

Fetch : StockItemName, BilledQty, Amount, BatchAllocations.*

11.1.7 Keep Source
The attribute Keep Source is used to store the source data in main memory. The default value of
this attribute is No.

When the Source Collection from which the Summary Collection is being prepared has a large
number of objects and Keep Source is set to Yes, then the system goes out of memory since
holding those objects in memory in one shot is not possible.

When Keep Source is set to No, the source objects are not retained in memory and they are
processed as they are collected.

Syntax

Keep Source : Yes/No/...

Where,
Each dot specifies parent one level up
. - Single dot retains the data of the source collection in current object.
.. - Double Dot will retain the data of the Source Collection in current object’s parent.
... - Triple Dot will retain the data of the Source Collection in the current object’s parent’s parent
and so on.

Example:
Keep the source collection in the current owner

Keep Source : Yes

 OR
Keep Source : .

Don’t keep the source collection data
Keep Source : No

Keep the current source collections data in the current object’s parent
Keep Source : ..
 217

TDL Reference Manual
Keep the current source collections data in current object’s grand parent
Keep Source :...

11.1.8 Search Key
This attribute is used to create index dynamically where the TDL programmer can define the key
and the Collection is indexed in the memory using the Key. Once the index is created, any object
in the collection can be instantly searched without needing a scan as in the case of a filter. Search
Key is Case Sensitive.

This attribute has to be used in conjunction with function CollectionFieldByKey. This function
basically maps the Objects at the run time with the Search Keys defined at the Collection.

Syntax

Attribute – Search Key
 Search Key : < Combination of Method name/s >

Function – CollectionFieldByKey
 $$CollectionFieldByKey:Method-Name:Key-Formula:CollectionName

Where
<Method-Name> is the name of the method,
<Key-Formula> is a formula that maps to the methods defined in the search key exactly in the
same order.

11.1.9 Data Source
Attribute data source allows to specify XML file as data source. The collection can be created
directly from the specified XML file and the data in the XML file can be displayed in a report.
Syntax

 DataSource : <Type> : <file path> : <Encoding>

Where,
<Type> specifies the type of data source. File Xml or HTTP XML
<File Path> data source file path
<Encoding> ASCII or UNICODE. This is Optional .The default value is UNICODE.

Example:
[Collection : My XML Coll]

DataSource : File Xml : “C:\MyFile.xml”

Please note that using the current object as a source-collection means Keep Source
is N/A as there is no actual source collection created.
218

TDL Reference Manual

In the above code snippet the type of file is ‘File XML ‘ as the data source is XMl file. The
encoding is Unicode by default as it is not specified.

11.1.10 Data Roll up/summarization capability in TDL Collection
Data roll up/ summarization capability facilitates the creation of large summary collections of
aggregations in a single scan using the new attributes of the Collection definition as discussed
above.

Prior to Tally.ERP 9, all the totals were generated using functions like CollAmtTotal or FilterAmt-
Total via collections. These have certain advantages and disadvantages. While they provide
excellent granularity and control, each call is largely an independent activity to gather the data set
and then aggregate it. This can make the code very complex and may not scale up if a large
number of totals need to be generated as in the case of most business summary reports or a
large underlying data set being used. Considering the object oriented nature of Tally data and
existence of sub-objects up to any level, the task becomes even more complex. These functions
require multiple data scans to produce a summary report with multiple rows and columns.

This methodology has now been complemented with a single scan to get all the totals including
those based on User Defined Fields (UDFs). Native aggregation capability has now been added
to a collection itself. The overall effect is a reduction in TDL code complexity and resource
requirement, enhanced performance by orders of magnitude especially concerning reports gener-
ation.

Example: 1
[Collection: My Source Collection]

Type : Voucher

[Collection: My Summary Collection]

Source Collection : My Source Collection

Walk : Ledger Entries

By : MyLedgeName : $LedgerName

Aggr Compute : My Total : Sum : $Amount

In the above code snippet, My Summary Collection is created out of source collection My Source
Collection where traversing is done to Ledger Entries using Walk and Ledger Name is the method
on which aggregation is performed to find the sum of the ledger amount.

Support for other data sources like ODBC, Dll will also be available in future
releases.
 219

TDL Reference Manual
Example: 2
In some scenario, current object itself is required as a Source and aggregation is performed on
collection obtained from it or its sub-collections. In such circumstances, if we use Source Collec-
tion as Voucher, then the entire vouchers within the company will be scanned unnecessarily to
find the current one which is a time consuming process. To avoid this, we can use Source Collec-
tion: Default, which will assume the current voucher as a Source.

[Collection : LedgerInAccAllocations]

Source Collection : Default

Walk : InventoryEntries, AccountingAllocations

By : LedgerName : $LedgerName

Compute : RateOfVA : $RateOfVAT:TaxClassification:+

 $TaxClassificationName

Aggr Compute : Amount : Sum : $Amount

Filter : IsVATLedgerinAcc

[System: Formula]

IsVATLedgerinAcc : $$IsSysNameEqual:VAT:$TaxType:Ledger:$LedgerName

While printing a voucher as an invoice, if an aggregation has to be done on its tax ledgers to show
as summary within the invoice, this has to be collected from the accounting allocations of the
same voucher.

11.1.11 Collection re–use, extraction and chaining support in TDL Collection
A collection can extract information from other collections including its sub-objects with the choice
of method(s), filter(s) and sort-order. Source Collection within a collection, collection(s) can be
chained. In other words, Summary Collection can be used as Source Collection for some other
Collection and so on.

Example:
[Collection: My Source Collection]

Type : Voucher

[Collection: My Summary Collection]

Source Collection : My Source Collection

Walk : Ledger Entries

By : MyLedgerName : $LedgerName

Aggr Compute : MyTotal : Sum : $Amount

[Collection: My Parent Summary Collection]

Source Collection : My Summary Collection

By : MyParent : $Parent:Ledger:$LedgerName

Aggr Compute : MyParentTotal: Sum : $MyTotal
220

TDL Reference Manual

In the above code snippet, My Parent Summary Collection extracts a sub-set of information from
a collection to an already summarized collection My Summary Collection.

11.1.12 Indexed or Searchable Collection on TDL defined keys
The capabilities discussed above extend the data gathering capabilities of TDL. However
business reporting in general and in Tally uses hierarchical presentation or columnar presentation
rather than simple table representation. This creates a unique and natural experience of working
with the product and business data.

In case, one can simply repeat the summarized collection and get the desired report, everything
works fine with the existing capabilities. However, if Report is having two or more dimensions like
Ledger and Cost Center and so on, a simple repeat on the summarized collection will not suffice.

Let us understand the same with the help of an example.
Example:
When a Report to be designed with ledgers as rows and cost centers as columns, the following
options are available:-

Use function(s) like CollectionField or FilterValue in each column.
Create Summary Collection for each column.

The first one will scan through the whole collection for every value required. The second one will
scan the whole source data as many times as number of columns. Both of them will take a signif-
icant hit on the scale and volume that it can handle and affect the resultant performance.

To provide presentation capabilities beyond simple tables, a new capability has been added to the
Collection definition. A search key can be defined in the collection using the Search Key attribute.
This implies that a unique key is created for every object which can be used to instantly access
the corresponding objects and its values without needing to scan or re-collect. The corresponding
function created to access the same is $$CollectionFieldByKey.

Example:
[Collection: LedCC]

Use : Voucher Collection

Walk : LedgerEntries, Category Allocations, Cost Centre +

 Allocations

By : PartyLedgerName : $PartyLedgerName

By : Cost Centre Name: $Name

Aggr Compute : Amount : $Amount

Search Key : $PartyLedgerName + $CostCentreName

[Field: My Rep Field]

Set as : $$CollectionFieldByKey:$Amount:@MySearchKey:LedCC

MySearchKey : #LedName + #CCName
 221

TDL Reference Manual
In Collection LedCC, a search key is created for every object with the help of Ledger Name and
Cost Center.

Now on any row/column in the report, combination total is accessed using
 $$CollectionFieldByKey:$Amount:@MySearchKey:LedCC

Where MySearchKey is the formula to get the Ledger Name + Cost Center name at a particular
point, LedName is the Field having LedgerName in current context and CCName is the variable
storing the Cost Centre Name in current context.

11.2 The Summary Collection is available through Tally ODBC Interface
Now Objects of the Summary Collection can be exposed to Tally ODBC Interface through Collec-
tion attribute ‘Is ODBC Table’. The values of the Collection attributes “Fetch’, ‘Compute, ‘By’ and
Aggr Compute’ are available through Tally ODBC Interface.

Syntax

[Collection: <Name of Summ Coll>]

 Is ODBC Table : <Logical value>

Where <Name of Summ Coll> is the name of the Summary Collection and <Logical value> can
be either Yes or No.

Example:
[Collection: Source Collection]

Type : Voucher

[Collection: Summary Collection]

Source Collection : My Source Collection

Walk : Ledger Entries

By : LedgerName : $LedgerName

Aggr Compute : Total : Sum : $Amount

Compute : Parent : $Parent:Ledger:$LedgerName

Is ODBC Table : Yes

The values of methods of ‘Summary Collection’ ‘LedgerName’, ‘Total’ and ‘Parent’ are exposed to
Tally ODBC interface.

11.3 HTTP XML Collection (GET and POST with and without Object Specification)
Collection capability has been enhanced to gather live data from HTTP/web-service delivering
XML. The entire XML is now automatically converted to TDL objects and is available natively in
TDL reports as $ based methods. There is no need to access the data via specialized functions
like $$XMLValue. Reports can be shown live from an HTTP server. Coupled with the new
[OBJECT:] extensions and POST action you can also submit data back to the server almost
operating Tally as a client to HTTP-XML web-services.
222

TDL Reference Manual

11.3.1 HTTP – XML Collection
Consider the following XML data stored in the file TestXML.xml which is available at server
Remote Server.
<CUSTOMER>

 <NAME>Sapna Awasthi</NAME>

 <EMPID>1000</EMPID>

 <PHONE>

 <OFFICENO>080-66282559</OFFICENO>

 <HOMENO>011-22222222</HOMENO>

 <MOBILE>990201234</MOBILE>

 </PHONE>

 <ADDRESS>

 <ADDRLINE>C/o. Info Solutions</ADDRLINE>

 <ADDRLINE>Technology Street</ADDRLINE>

 <ADDRLINE>Tech Info Park</ADDRLINE>

 </ADDRESS>

</CUSTOMER>

This capability allows us to retrieve and store this data as objects in Collection. The attributes in
collection for gathering XML based data from a remote server over HTTP are RemoteURL,
RemoteRequest, XMLObjectPath, and XMLObject. Whenever the collection is referred the data is
fetched from the remote server and is populated in the collection.

Syntax

[Collection: <Collection Name>]

 RemoteURL : http-url

 RemoteRequest : <request-report-name>,<pre-request-display-report> : +

 <encoding type>

 XMLObjectPath : <Start-node> : <Path-to-start-node>

 XMLObject : <TDL-Object-Name>

Where
Remote–URL attribute is used to specify the URL of the HTTP server delivering the XML data
RemoteRequest attribute is used to specify the Report name which is to be sent to the HTTP
server as an XML Request. If the report requires user inputs then it has to be accepted before the
request is sent. Pre-request display report specifies the name of the report which accepts the
user-input.
XMLObjectPath attribute is used when only a specific fragment of the response XML is required
and converts the same to TDL Objects in Collection. By default, it takes the root node.
<Start-Node> allows you to specify the name and position of the XML node from which the data
should be extracted. It takes two parameter as follows:

 <Node Name> : <Position>
 223

TDL Reference Manual
<Path-to-Start-Node> is used to specify the path to reach the <start node> from the root node.

The path specification is :
<Root-node> : <Child Node> : <Start Pos> : <Child Node>: <Start Pos> …

XMLObject attribute is used to specify the TDL Object specification.
The following syntax is used for object specification

[Object: <Object Name>]

 Storage : <Name> : Type

 Collection : <Name> : Type

/* The second Parameter in the Collection Type can be a Object type in case of a complex collection or a
simple data type in case of simple collection */

All these attributes cater to specific requirements based on the GET request or POST request and
whether the obtained data is stored in Tally.

11.3.2 Prerequisites for data transfer over HTTP
In order to retrieve the data available in TestXML.xml file from a remote server (Pre-defined IP
Address) ensure that web service is running on the machine. Check for IIS Server Installation.
The file TestXML.xml can be copied to the directory C:\Inetpub\wwwroot to be accessible at the
root and then the URL can be specified as follows http://localhost/TestXML.xml.

If the XML request needs to be processed at the remote server by a file (.asp, .php, etc.), at least
one web server (e.g., IIS, Apache etc) and PHP/ASP must be installed on the system.

11.3.3 Simple GET Request
If it is required to access the data (XML format) from remote server in a collection it is sufficient to
specify the URL of the server only. The attribute RemoteURL is used. The data thus obtained is
available in the collection as objects and can be accessed as native methods.

The collection to populate XML Data available at the URL http://Remoteserver/TestXML.xml is
created as follows:

Example:
[Collection: XML Get Collection]

Remote URL : "http://RemoteServer/TestXML.xml"

This collection can be used in a TDL Report to display the data retrieved. The method names will
be same as the XML Tag names.

By default, all the data from XML file is made available in the collection. If only a specific data
fragment is required it can be obtained using the collection attribute XML Object Path.
224

TDL Reference Manual

Example:
From the XML file, if only address is required then the collection is defined as follows:
[Collection : XML Get CollObjPath]

Remote URL : "http://Remoteserver/TestXML.xml"

XML Object Path : ADDRESS:1:CUSTOMER

Consider that the XML file on the remote server contains multiple customer objects with the
hierarchy mentioned earlier. The file “TestXML.xml” has the following structure :
<CUSTOMERS>

 <CUSTOMER>

 .

 .

 </CUSTOMER>

 <CUSTOMER>

 .

 .

 </CUSTOMER>

 <CUSTOMER>

 .

 .

 </CUSTOMER>

</CUSTOMERS>

If the address of second Customer is required then the collection is defined as shown:
[Collection : XML Get CollObjPath]

Remote URL : "http://Remoteserver/TestXML.xml"

XML Object Path : ADDRESS:1:CUSTOMERS:CUSTOMER:2

Consider that the Address further contains data as shown:
<CUSTOMER>

 .

 .

 <ADDRESS>

 <PHONE> 9902012345 </PHONE>

 <PHONE> 9902099020 </PHONE>

 </ADDRESS>

 .
 225

TDL Reference Manual
 </CUSTOMER>

In this case to retrieve the second phone number of third customer, the collection is defined as
follows:

[Collection : XML Get CollObjPath]

Remote URL : "http://Remoteserver/TestXML.xml"

XML Object Path : PHONE:2:CUSTOMERS:CUSTOMER:3:ADDRESS:1

11.3.4 Simple GET Request and mapping the response to TDL Object
The data available in XML format is at the URL “http://Remoteserver/TestXML.xml”. The data is
required to be mapped as TDL Objects. The collection attribute XML Object is used to specify the
object name to which the obtained data is mapped.

Example:
[Collection: XML Get Collection]

 Remote URL : "http://Remoteserver/TestXML.xml"

 XML Object : Customer Data

The Object specification for “Customer Data” is as follows:
[Object: Customer Data]

Storage : Name : String

Storage : EmpId : String

Collection : Phone : XML Phone Coll ;; Complex Collection

Collection : ADDRESS : XML AddressColl ;; Complex Collection

[Object: XML Phone Coll]

Storage : OfficeNo : String

Storage : HomeNo : String

Storage : Mobile : String

[Object: XML AddressColl]

Collection : AddrLine : String ;; Simple collection

11.3.5 A Simple POST
If a TDL report is to be sent to the HTTP server as an XML request and the XML response is to be
obtained in the collection, then the collection attribute “Remote Request” is used. The attribute
“Remote Request” takes a Report name as a parameter which sends the request in XML format
to the web page on the remote server. The response data received from the server is then
available in the collection.
226

TDL Reference Manual

Example:
The Test.php page on the remote server accepts the data in the following XML format.
<ENVELOPE>

 <REQUEST>

 <NAME>Tally</NAME>

 <EMPID>00000</EMPID>

 </REQUEST>

</ENVELOPE>

Following collection sends request in the above XML format with the help of a TDL report XML-
PostReqRep. The encoding scheme selected is ASCII.

[Collection: XML Post Collection]

 Remote URL : "http://Remoteserver/test.php"

 RemoteRequest : XMLPostReqRep : ASCII

 XMLObjectPath : CUSTOMER

The report XMLPostReqRep is automatically executed when the collection is referred.
In the Report, the XMLTAG attribute is used at Part and Field Definitions.

[Part: XMLPostReqRep]

XML Tag : "REQUEST"

Scroll : Vertical

[Field: XMLPostReqRepName]

XML Tag : "NAME"

Set As : " Tally "

[Field: XMLPostReqRepPwd]

XML Tag : " EMPID "

Set As : " 00000 "

The XML Tag <Envelope> is added by Tally while sending the XML request.
The response received from http://Remoteserver/test.php page is the same XML given previously.
The data now available in the collection can be displayed in a report.

11.3.6 Post Request with Pre-request Report
A Pre-Request report is required when some inputs are to be accepted from the user and the XML
Request is to be generated out of those inputs. In that case, a TDL report is used which has to be
accepted first. If the data captured through pre request report has to be sent to remote server for
processing then it has to be made available in the Request report. The input report name is
specified as Pre-Request report.
 227

TDL Reference Manual
[Collection: XML Post Collection]

Remote URL : "http://localhost/test.php"

RemoteRequest : XMLPostReqRep, XML PreReqRep : ASCII

XMLObjectPath : CUSTOMER

The Report XMLPostReqRep sends the XML request to the page Test.php in the format
described earlier. Before sending the XML request to the page the data entered in the report XML
PreReqRep must be accepted. The data entered in the Pre-Request report can also be sent to
the remote server in the XML request. Both the reports are triggered when the collection is
referred.

11.3.7 Action – HTTP POST
A new Key/ Button Action HTTP Post has been introduced which will help in exchanging data with
external applications using web services. In other words, HTTP Post Action can be used to
submit data to a server over HTTP and gather the response. This will enable a TDL Report to
perform a HTTP Post to a remote location.

Syntax

[Key: <Key Name>]

 Key : <Key Combination>

 Action : HTTP Post : <URL Formula> : <Encoding> : +

 <Request Report>: <Error Report> : <Success Report >

Where,
<URL Formula> can be any string formula which resolves as an URL and is defined under
System Definition.
<Encoding> is the encoding scheme ASCII or UNICODE .
<Request Report> is the name of the TDL Report which will be used for generating XML
Request to be sent.
<Error Report > is displayed in case of failure.
<Success Report> is displayed when the post is successful.

The details pertaining to URL (at the receiving end), Encoding Format, Request Report, Error
Report and Success Report should be specified along with HTTP Post Action. Universal
Resource Locator (URL) for which information is intended has to be specified through a System
Formula.

Encoding Format specifies the encoding to be used while transmitting information to the receiving
end. The valid encoding formats are ASCII and UNICODE. UNICODE is set by default.
Request Report is the name of the TDL Report which will be used for generating XML Request to
be sent. Error Report and Succcess Reports are optional and will enable the programmer to
display a Report with the details of the XML response received.
228

TDL Reference Manual

Success and failure is determined by <STATUS> tag in the standard message format. If its 1 it’s a
success other wise failure. Based on the value of the <STATUS> tag 0/1, the error report and
success report are executed respectively. It will not close or accept the form if status is not equal
to 1. Both the Request / Response are exchanged in XML format.

Example:
[Key: XMLReqResp]

 Key : Ctrl + R

 Action : HTTP Post : @@MyUrl : ASCII : ReqRep: ERRRespRep: SuccRep

 Scope : Selected Lines

;;URL Specification must be done as a system formula
[System: Formula]

 MyUrl : http://127.0.0.1:9000

The defined Key XMLReqResp in the snippet above must be attached to an initial Report. When
the report is activated and this Key is pressed, the Action HTTP Post activates a defined report
ReqRep which generates the request XML. The response data is made available in collection
called Parameter Collection. The reports ERRRespRep and SuccRep can use the Parameter Col-
lection to display the error message/data in the Report.

11.4 Usage As Tables
A Collection in TDL as we all understand can populate the data from a wide range of sources
which are available as Objects in the Collection.
The various sources of Objects in Collection are:

External Objects i.e. Objects created by the TDL programmer
Internal Objects i.e. All Internal Objects provided by platform and stored in Tally DB. For
example Ledger, Group, Voucher, Cost Centre, Stock Item etc
Objects populated in the collection from an external database using ODBC referred to as
ODBC Collection
Objects populated in collection from an XML file present on the remote server over
HTTP. This collection is referred to as an XML Collection.
Objects obtained after aggregation of data from lower level in the hierarchy of internal
objects.

Tables are based on Collections. Prior to this release, not all collection types as given above could
be used as tables. Not all internal objects were available in the Table. Only the masters i.e.

The XML response received for the action HTTP POST must be in the Tally compat-
ible XML format. The file “XML for HTTP POST” shows the format received as a
reponse from the PHP application file “CXMLResponse as per Tally”.
 229

TDL Reference Manual
Groups, Ledgers, Stock Items, etc could be displayed in the Table. Using Vouchers in table was
not possible. Data from ODBC Collection was also not possible.
From this Release onwards, all limitations pertaining to usage of Collections as Tables have been
completely eliminated. Any Collection which can be created in TDL can be displayed as a table
now. Collection with Aggregation and XML Collections can also be used as Tables.

Prior to this release, the following types of Collections could not be used as Tables:
Voucher Collection As Table
Collections with Aggregation As Table
Displaying information at lower levels in Object hierarchy in a Table
Displaying aggregate methods in Table
Displaying ODBC Collection As Table
Displaying XML Collection As Table

Let us consider the following examples to understand the capability in a better way

11.4.1 Voucher Collection As Table
Now the Vouchers can be displayed as table in a field.

Example: Voucher Collection as Table
[Collection: Vch Collection]

Type : Voucher

Filter : PurcFilter

Format : $VoucherNumber, 10

Format : $VoucherTypeName, 25

Format : $PartyLedgerName, 25

Format : $Amount, 15

[System: Formula]

PurcFilter : $$IsPurchase:$VoucherTypeName

;;Field displaying Table
[#Field: EI OrderRef]

Table : Vch Collection

Show Table : Always

11.4.2 Collection with Aggregation As Table

Example: 1 – Displaying Inventory Entries (lower level information in Voucher) As Table
[Collection: Vch Collection]

Type : Voucher

Filter : PurcFilter
230

TDL Reference Manual

[Collection: Summ Collection]

Source Collection : Vch Collection

Walk : Inventory Entries

By : Name : $StockItemName

[System: Formula]

PurcFilter : $$IsPurchase:$VoucherTypeName

;; Field displaying Table
[#Field: EI OrderRef]

Table : Summ Collection

Show Table : Always

Example: 2 – Displaying Collections with aggregate methods As Table

[Collection: Vch Collection]

Type : Voucher

Filter : PurcFilter

[Collection: Summ Collection]

Source Collection : Vch Collection

Walk : Inventory Entries

By : Name : $StockItemName

Aggr Compute : BilledQty : Sum : $BilledQty

Aggr Compute : Amount : Sum : $Amount

Format : $Name, 25

Format : $BilledQty, 25

Format : $Amount, 25

[System: Formula]

PurcFilter : $$IsPurchase:$VoucherTypeName

;;Field displaying table
[#Field: EI OrderRef]

Table : Summ Collection

Show Table : Always

11.4.3 ODBC Collection As Table
Example: Data fetched from Excel file in Collection displayed as Table
In the sample given below the excel file “Sample Data.xls” containing the data is present in the
path “C:\Sample Data.xls”. If the complete path is not specified, it locates the Excel file in the Tally
application folder.
 231

TDL Reference Manual
[Collection: ODBC Excel Collection]

ODBC : "Driver= {Microsoft Excel Driver (*.xls)};DBQ= C: +

 \Sample Data.xls" SQL : "Select * From [Ledgers$]"

Format : $_1, 25

Format : $_2, 20

Format : $_3, 15

Format : $_4, 25

;; Field displaying table
[#Field: EI OrderRef]

Table : ODBC Excel Collection

Show Table : Always

11.4.4 XML Collection As Table
XML Data fetched from Remote URL in Collection as Table .Below is the XML Data Sample to be
retrieved from the Remote URL
<CUSTOMER>

 <NAME>Keshav</NAME>

 <ADDRESS>

 <ADDRLINE>Line1</ADDRLINE>

 <ADDRLINE>Line2</ADDRLINE>

 <ADDRLINE>Line3</ADDRLINE>

 </ADDRESS>

 <ADDRESS>

 <ADDRLINE>Line1</ADDRLINE>

 <ADDRLINE>Line2</ADDRLINE>

 <ADDRLINE>Line3</ADDRLINE>

 </ADDRESS>

</CUSTOMER>

In the example, the complete URL of the file is http://localhost/XMLData.xml.Here the file XML-
Data.xml is located in the local machine. Instead of local host, the IP Address of the machine or
127.0.0.1 can be specified. The web service should be installed in the machine.

Example:
[Collection: XML Table]

RemoteURL : "http://localhost/XMLData.xml"

XMLObjectPath : CUSTOMER

Format : $NAME, 25
232

TDL Reference Manual

;; Field displaying Table
[#Field: EI OrderRef]

Table : XML Table

Show Table : Always

11.5 Dynamic Object support for HTTP–XML Information Interchange
When a Collection is used for editing (alter/create), objects are dynamically added to the collec-
tion when a new line is repeated over the same. The type of object which is added depends on
the specification in the TYPE attribute. In case the TYPE attribute is not specified it defaults to
adding a standard empty object. So if the TYPE is ledger, a ledger object would be added and so
on.
However, the following holds true for a COLLECTION keeping in mind the latest enhancements

It can be made up of multiple types of objects (say Ledgers and Groups)
It can have TDL defined objects which are retrieved from XML file .They are specified
using XML Object.
It can have aggregated objects

Depending solely on the TYPE attribute for deciding the object type is a constraint with respect to
the above facts. This is now being removed with the introduction of a new attribute which will inde-
pendently govern the type of object to be added to the collection on-the-fly. The following is now
supported in collection

NEWOBJECT: type-of-object: condition

Whenever a new object is to be added at the collection level, it will walk through the NEW
OBJECT attribute specification and validate the condition specified. The first one which is
satisfied decides the type of object to be added. The object can be a schema defined internal
object or a TDL defined object [OBJECT: MYOBJECT]

The capability to use objects defined in TDL is being separately enhanced and shown here for
completeness of the NEW OBJECT attribute. As of now, these TDL defined objects can be used
only for HTTP-XML based exchange with other systems to take input and send requests or
receive XML and operate them like TDL objects. They cannot be persisted or saved into the Tally
company database.

Please refer the following code snippet for Object specification.
Example: This collection can be used in a Report opened in Alter Mode.
[Collection: Coll Customer]

New Object : Customer Data ;; New TDL Object Defined

[Object: Customer Data]

Storage : Name : String

Storage : CustId : String
 233

TDL Reference Manual
Collection : PhoneColl : Phone ;; Complex Collection

Collection : AddressColl : Address ;; Complex Collection

[Object: Phone]

Storage : OfficeNo : String

Storage : HomeNo : String

Storage : Mobile : String

[Object: Address]

Storage : AddrLine1 : String

Storage : AddrLine2 : String

In case there is no NEW OBJECT specified, the existing behavior will continue for backward com-
patibility. In case of Sub-Objects like LedgerEntries, the same behavior continues since they are
added by their parent objects and not by the Collection.

11.6 Collection Capabilities for Remoting
Enabling access to your organizational data in an ‘any-time, any-where’ and yet being truly usable
is what Tally.ERP 9 delivers. With Tally.NET enabled remote access, it will be possible for any
authorized user to access Tally.ERP 9 from anywhere.
Major Enhancements have taken place at the collection level to achieve remoting capabilities.
The attributes Fetch, Compute and AggrCompute provided at the collection level and FetchObject
and FetchCollection at the report level significantly help in above functionality.

The remoting capabilities are discussed in detail in the next section II “Writing Remote
Compliant TDL for Tally.ERP 9 ”.
234

Remote Compliant TDL Reports
Enabling access to your organizational data in an ‘any-time, any-where’ and yet being truly usable
is what Tally.ERP 9 delivers.With Tally.NET enabled remote access, it will be possible for the
owner or any authorized user to access Tally.ERP 9 data from anywhere.With this capability they
will be able to access all the reports and information from a remote location.

All these has been made possible by adopting Client/Server architecture in the product. The
underlying principle of any client/server environment is the communication between client and
server in a request/response fashion.The request/response is in the form of XML.Client sends
request and the server responds.

Starting from Tally.ERP 9 family the default product delivers the capability to access any TDL
reports from anywhere.There have been significant enhancements in Tally platform at the Collec-
tion,Report and Function Level for delivering this capability.The way TDL Reports have been
changed in default TDL to optimize the performance and seamlessly work without clogging the
network is the focus of this document.The idea is to reduce the server calls for accessing the
data.The same concepts can be followed for creating the customized Reports Remote Compliant.

Given below is the overall enabled enviroment using Tally.NET

 Figure 1.1 Overview of Tally.NET
 235

TDL Reference Manual
We will begin our discussion with an overview of client/server environment in general and then
moving on to Tally Client/Server, the role of Tally.NET server in such a scenario.The topics
covered henceforth will focus on on understanding the execution of TDL reports and optimizing
the code for executing in this environment.

1. Client/Server Architecture – An Overview
Clients and Servers are separate logical entities that work together over a network to accomplish
a task. A client is defined as a requester of services and a server is defined as the provider of
services.

 Figure 1.2 Block diagram of client/server architecture

Some of the advantages of client/server architecture are as follows

Centralization - Resources, and data security are controlled through the server
Scalability – Entire system can be scaled horizontally or vertically.
Accessibility - Server can be accessed remotely

2. Tally Client/Server Architecture using Tally.NET
Tally.NET is a framework which provides number of services to Tally.ERP 9 users. The Tally.NET
architecture is derived from client/server architecture. In this architecture Tally.ERP 9 Client is
connected to Tally.ERP 9 server via middleware ie Tally.NET Server. Following are the major com-
ponents of the Tally.NET architecture.

Tally.NET Server
Tally.ERP 9 Server
Tally.ERP 9 Client
236

TDL Reference Manual

2.1 Tally.NET Server
Tally.NET Server is a middleware in Tally.NET architecture. The communication between
Tally.ERP 9 Server and Tally.ERP 9 client is being handled by Tally.NET Server. It provides the
Routing services for Tally. It is through Tally.NET server that we are able to provide an entire
range of services which we commonly refer to as Tally.NET features. The user can utilize
Tally.NET to Synchronize data, access online help and support, manage licenses across locations
and the auditor can use it to scrutinise the client’s data from a remote location all this can be done
in a secured environment.
The system administrator can create users with the rights to access or audit data from a remote
location and assign controls based on their security level for the required company only. The
remote users accessing the company data behave as clients on Tally.NET. Tally.NET takes care of
the user authentication when a remote user tries to connect to the Tally.ERP 9 Server.

2.1.1 Tally.NET Features
Register and Connect companies from Tally.ERP 9
Create and maintain Remote Users
Remote availability of Auditor’s License
Synchronization of data (via Tally.NET)
Remote access of data by any user (including BAP users)
Use online help and support capability from within Tally or browser
Application Management (across Multi-serial, Multi-Location) via Tally or browser

 Figure 1.3 Tally.NET Architecture

2.2 Tally.ERP 9 Server
Tally.ERP 9 Server is a typical Tally application which hosts the Tally Company and is always
connected to the Tally.NET server. User creation, authorization, connecting the company to
Tally.NET server is handled at this end.
 237

TDL Reference Manual
2.3 Tally.ERP 9 Client
Tally.ERP 9 Client is a typical Tally application. Tally client can remotely access the Tally Company
which is hosted by Tally server. Authenticated users connect to enabled companies from this end.

3. Setting up Server Tally for Remote Access
Following are the steps needs to be executed to setup the Tally server.

Step 1:- Enable Security control to avail Tally.NET features

Go to Gateway of Tally ,click F3 :Company Info. > Alter

 Figure 1.4 Enabling Security control to avail Tally.NET features
238

TDL Reference Manual

Step 2:- Configuring Tally.NET features

Go to Gateway of Tally, click F11:Features > Tally.NET Features

 Figure 1.5 Configuring Tally.NET features
 239

TDL Reference Manual
Step 3:- Authorizing the Remote Users

Go to Gateway of Tally ,click F3 :Company Info > Security Control > Users & Passwords

 Figure 1.6 Authorizing the Remote Users

TABLE 1.

 Users classified under the security level Tally.NET User and
Tally.NET Auditor should be created individually by the system
administrator.

 Allow Remote Access should be set to Yes only if client wants his
Tally.NET Auditor/ Tally.NET User to access data remotely.

 If Allow Local TDL is set to Yes, then client can load Local TDLs in
addition to remote TDLs.

 If Allow Local TDL is set to No, then client can not load Local TDLs.
240

TDL Reference Manual

Step 4:- Connecting Companies to Tally.NET

Go to Gateway of Tally ,click F4:Connect Company

 Figure 1.7 Connectiong companies to Tally.NET

4. Setting up the Client Tally
The users classified under Tally.Net User or Tally.NET Auditor can access data by logging in from
a remote location. The user has to execute the following steps to login as a remote user.

Step 1:- Get connected to the Tally.NET
 241

TDL Reference Manual
 Figure 1.8 Connectiong Tally.NET

Step 2:- Provide the User name and password

 Figure 1.9 Providing User Name and Password

After entering the valid username and password Tally displays the screen to select the remote
company.
242

TDL Reference Manual

Step 3:- Load the Remote company

 Figure 1.10 Loading Remote Company

The above screen displays the list of companies to which the remote user has access. First all the
Online companies are listed followed by the list of offline companies.

5. TDL – In a Client/Server Environment
In client/ server environment, data resides in the server. A typical client will have only user inter-
face. Whenever client requires data, it has to send request to the server with credentials and
server will respond with the data.

In Tally.NET environment, server and client exchange the request/response in encrypted XML
format. When a client is Tally application, Tally client will have only user interface and needs to get
data from the server on demand. A typical Tally application is developed in TDL.In TDL language,
definitions are broadly classified as Data Objects & Interface Objects. Interface object define the
user interface and Data objects store the value in Tally primary or secondary database. Tally client
will have only Interface Objects locally and Data Objects needs to be fetched from the server on
request.

It is TDL Programmer’s responsibility to fetch the required data from the Tally server to Tally
Client.
 243

TDL Reference Manual
6. TDL Enhancements for Remote
TDL language is enhanced with the client/server capability. Collection and Report definitions are
enhanced to make server calls.Enhancements have taken place in the platform for the execution
of the Functions and Actions.

6.1 Collection Enhancements
In TDL, Collection definition is a data repository which contains the data objects. Whenever Tally
Client uses a Collection, it has to fetch the objects from the Remote server. But Tally Client need
not require the all the methods of an Object. Also fetching the entire Object may be costly in terms
of network bandwidth.

The required methods of an object(s) at the Tally Client are fetched using the Collection attribute
‘Fetch’. In addition to ’Fetch’, methods which are doing aggregation or computation using ‘Aggr
Compute’ & ‘Compute’ are also brought to Tally Client.
Internally fetching a method will generate a XML fragment and will be sent to Tally Server as a
request.

1. Fetch
Syntax

Fetch : Existing-Method-Name-in-Source, …

Where,
<Existing-Method-Name-in-Source> are the internal methods of the Object which needs to be
fetched to Client.

2. Compute
Compute : Method-Name : Method-Formula

Where,
<Method-Formula> is any computational method and Method-Name denotes the name of the
method.

TABLE 2.

Please refer ‘TDL Enhancements for Tally.ERP 9.pdf‘ for further informa-
tion on Collection attributes ‘Aggr Compute’ , ‘Compute’ and ‘Fetch’ .
244

TDL Reference Manual

Example: Fetching Name & Closing Balance of Ledger Object

Step 1:- Fetching Name and Closing Balance method of Ledger object
[Collection: Ledgers]

Type : Ledger

Fetch : Name, Closing Balance, Parent

Compute : PClosingBalance: $ClosingBalance:Group:$Parent

Format : $Name, 15

Step 2: - Utilizing the fetched methods
a) As a Table

[Field: Sample Field]

Table : Ledgers

Show Table : Always

b) In Repeat at Part Level

[Part: Sample Part]

Line : Sample Line

Repeat: Sample Line : Ledgers

[Line: Sample Line]

Fields : Sample Fld1, Sample Fld2, Sample Fld3

[Field: Sample Fld1]

Use : Name Field

Set as : $Name

[Field: Sample Fld2]

Use : Amount Field

Set as : $ClosingBalance

[Field: Sample Fld3]

Use : Amount Field

Set as : $PClosingBalance
 245

TDL Reference Manual
Sample Request Format XML file to fetch the internal methods and Compute method
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>EXPORT</TALLYREQUEST>

 <TYPE>COLLECTION</TYPE>

 <ID>Ledger</ID>

 </HEADER>

 <BODY>

 <DESC>

<STATICVARIABLES>

 <SVEXPORTFORMAT>BinaryXML</SVEXPORTFORMAT>

 <SVCURRENTCOMPANYTYPE="String">DemoCompany</SVCURRENTCOMPANY>

 <SVCURRENTDATE TYPE="Date">20-Dec-2008</SVCURRENTDATE>

 <SVFROMDATE TYPE="Date">1-Apr-2008</SVFROMDATE>

 <SVTODATE TYPE="Date">31-Mar-2009</SVTODATE>

 <SVCURRENTKBLANGUAGEID TYPE="Number">1033

 </SVCURRENTKBLANGUAGEID>

 </STATICVARIABLES>

<TDL>

<TDLMESSAGE>

<COLLECTION NAME="Ledger" ISMODIFY="No" ISFIXED="No"

 ISINITIALIZE="Yes" ISOPTION="No" ISINTERNAL="No">

<TYPE>Ledger</TYPE>

<METHOD>PClosingBalance:$ClosingBalance:Group:$Paren </METHOD>

<NATIVEMETHOD>Name</NATIVEMETHOD>

<NATIVEMETHOD>Parent</NATIVEMETHOD>

<NATIVEMETHOD>ClosingBalance</NATIVEMETHOD>

 </COLLECTION>

</TDLMESSAGE>

</TDL>

</DESC>

</BODY>

<ENVELOPE>
246

TDL Reference Manual

6.2 Report Level Enhancements
6.2.1 Fetching the Object
When a multiple methods of a single Object is required for a Report, then that Object can be
fetched at Report level. For this purpose new Report attribute ‘Fetch Object’ is introduced. Inter-
nally fetching an object will generate a XML fragment and will be sent to Tally Server as a request.

Syntax

Fetch Object: <Object Type> :<Object Name>:<Method Name1 +

 [,<Method Name 2>…]
Where,
<Object Type> denotes the type of the Object,
<Object Name> denotes the name of the object and
<Method Name 1> denote the method to be fetched.

Example: Pre fetching Ledger Object with methods Name & Closing Balance
[Report: Simple Report]

Fetch Object : Ledger : Ledger Name : Name, Parent,Closing Balance

In the above code snippet, Ledger Name is the variable which stores the name of the Ledger
Object whose methods needs to be fetched at the Report.

Sample Request Format XML file to fetch the object
<ENVELOPE>

<HEADER>

<VERSION>1</VERSION>

<TALLYREQUEST>EXPORT</TALLYREQUEST>

<TYPE>OBJECT</TYPE>

<SUBTYPE>Ledger</SUBTYPE>

<ID TYPE="Name">Cash </ID>

</HEADER>

<BODY>

<DESC>

<STATICVARIABLES>

<SVCURRENTCOMPANY>Demo Company</SVCURRENTCOMPANY>

<SVEXPORTFORMAT>BinaryXML</SVEXPORTFORMAT>

<SVFROMDATE TYPE="Date">1-Apr-2008</SVFROMDATE>

<SVTODATE TYPE="Date">31-Mar-2009</SVTODATE>

<SVCURRENTDATE TYPE="Date">1-May-2008</SVCURRENTDATE>

<SVVALUATIONMETHOD TYPE="String"></SVVALUATIONMETHOD>
 247

TDL Reference Manual
<SVBUDGET TYPE="String"> </SVBUDGET>

<SVCURRENTKBLANGUAGEIDTYPE="Number">1033

</SVCURRENTKBLANGUAGEID>

<SVCURRENTUILANGUAGEIDTYPE="Number">1033

</SVCURRENTUILANGUAGEID>

</STATICVARIABLES>

<FETCHLIST>

<FETCH>Name</FETCH>

<FETCH>Parent</FETCH>

<FETCH>Closing Balance</FETCH>

</FETCHLIST>

</DESC>

</BODY>

</ENVELOPE>

6.2.2 Pre Fetching the Object
There are some scenarios in which it is required to set the value of variables according to the data
fetched along with the object.At the report level the Set attribute for changing variable value takes
precedence and Fetch Object is evaluated later.In those cases fetching the object first becomes
mandatory.For this purpose a new attribute “Pre Fetch Object” is introduced which will be
evaluated before the Set attribute.

Syntax

Pre Fetch Object: <Object Type> :<Object Name>:<Method Name1 +

 [,<Method Name 2>…]
Where,
<Object Type> denotes the type of the Object,
<Object Name> denotes the name of the object and
<Method Name 1> denote the method to be pre fetched.

Example:
[Report: Simple Report]

Set : LedgerName: “Cash”

Pre Fetch Object : Ledger : LedgerName : LastVoucherDate

Set : SVFromDate: $LastVoucherDate:Ledger:##LedgerName

In the above code snippet, variables are set once and the PreFetchObject is done and again the
variables are set to make sure that the values of the variables which were depend on the object
will set now
248

TDL Reference Manual

6.2.3 Pre fetching the Collection
When the same collection is used in the Report either for repeating the line over its objects or
multiple functions using the same,then a Collection of those objects can be pre fetched at the
Report level. A new Report attribute ‘Fetch Collection’ is introduced to pre fetch a Collection.

Syntax

Fetch Collection:<Collection 1>[,<Collection 2>..]

Where,
<Collection 1> is the collection whose objects need to be pre fetched at Report

Example: Pre fetching Ledger collection
[Report: Sample Report]

Fetch Collection : Ledger

Local : Collection: Fetch : Ledger

In the above code snippet Ledger Collection is pre fetched.

Sample Request Format XML file to fetch the object
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>EXPORT</TALLYREQUEST>

 <TYPE>COLLECTION</TYPE>

 <ID>All Party</ID>

 </HEADER>

 <BODY>

 <DESC>

 <STATICVARIABLES>

 <SVEXPORTFORMAT>BinaryXML</SVEXPORTFORMAT>

 <SVUSEPARMLIST>No</SVUSEPARMLIST>

 <SVFORTABLE>No</SVFORTABLE>

 <SVCURRENTCOMPANY TYPE="String">Remote Vivek</SVCURRENTCOMPANY>

 <SVCURRENTDATE TYPE="Date">2-May-2008</SVCURRENTDATE>

 <SVFROMDATE TYPE="Date">1-Apr-2008</SVFROMDATE>

 <SVTODATE TYPE="Date">31-Mar-2009</SVTODATE>

 <SVVALUATIONMETHOD TYPE="String"></SVVALUATIONMETHOD>

 <SVBUDGET TYPE="String"></SVBUDGET>

 </STATICVARIABLES>

 <TDL>
 249

TDL Reference Manual
 <TDLMESSAGE>

 <COLLECTION NAME="All Party" ISMODIFY="No" ISFIXED="No"

 ISINITIALIZE="Yes" ISOPTION="No" ISINTERNAL="No">

 <TYPE>Ledger</TYPE>

 <BELONGSTO>Yes</BELONGSTO>

 <CHILDOF>$$GroupSundryDebtors</CHILDOF>

 <NATIVEMETHOD>OpeningBalance</NATIVEMETHOD>

 <NATIVEMETHOD>ClosingBalance</NATIVEMETHOD>

 </COLLECTION>

 </TDLMESSAGE>

 </TDL>

 </DESC>

 </BODY>

</ENVELOPE>

6.3 Function on Request
Functions in TDL are defined and provided by the platform. TDL programmer can only call a
function. Now in client/server environment functions can be evaluated by either sever or client or
both client and server. Based on this information functions can be classified as follows.

1. Evaluated at client side
2. Evaluated at server side
3. Hybrid

6.3.1 Evaluated at client side
These are the functions which will be evaluated at the client side. For this no server request is
required from the client. If these functions require any parameter as data, then required data
needs to be fetched from the server before the function is called.

Example:
$$KeyExplode, $$ExplodeLevel ,$$Line etc are the functions which does not require any
parameter from the Tally server and is executed at the Tally client.

6.3.2 Evaluated at server side
These are the functions which will be evaluated at the server side. For each call of a function, a
request will be sent to server along with the parameters.

Example:
$$NumStockItems, $$NumLedgers etc. are the functions which will be executed at the server
side.
250

TDL Reference Manual

Sample Request Format XML file for Function Call
<ENVELOPE>

 <HEADER>

 <VERSION>1</VERSION>

 <TALLYREQUEST>EXPORT</TALLYREQUEST>

 <TYPE>FUNCTION</TYPE>

 <ID>$$NumLedgers</ID>

 </HEADER>

 <BODY>

 <DESC>

 <STATICVARIABLES>

 <SVCURRENTCOMPANY>Demo Company</SVCURRENTCOMPANY>

 <SVEXPORTFORMAT>BinaryXML</SVEXPORTFORMAT>

 <SVFROMDATE TYPE="Date">1-Apr-2008</SVFROMDATE>

 <SVTODATE TYPE="Date">31-Mar-2009</SVTODATE>

 <SVCURRENTDATE TYPE="Date">1-May-2008</SVCURRENTDATE>

 <SVCURRENTKBLANGUAGEID TYPE="Number">1033</SVCURRENTKBLANGUAGEID>

 <SVCURRENTUILANGUAGEID TYPE="Number">1033</SVCURRENTUILANGUAGEID>

 </STATICVARIABLES>

 </DESC>

 </BODY>

</ENVELOPE>

6.3.3 Hybrid
These are the functions which will be executed on either client or server side based on the availa-
bility of the data.

Example:
$$IsSales, $$CollAmtTotal, $$FilterAmtTotal etc are the functions which will be executed at the
server or client side based on the availability of data.

Server side execution: -
$$FilterAmtTotal:$OpeningBalance:Ledgers:MyFilter

Since Ledger Collection is available on sever, so the function FilterAmtTotal will be executed at
the Server end.
Client side execution: -

$$FilterAmtTotal:$Amount:LedgerEntries:MyFilter
 251

TDL Reference Manual
‘Ledger Entries’ collection is available inside the Voucher Object. So the required Voucher Object
needs to be fetched to the Client before the function is executed. Once the Voucher is brought to
the client, function will be executed on the client side since it is assumed to be executed in
Voucher context.

6.4 Action Enhancements
The Action “Modify Object” is executed in the Display mode of any report. This action can be
executed at the client’s end to modify any object present on the Server Company.For details on
usage of this action please refer ‘TDL Enhancements for Tally.ERP 9”

Syntax

Action : Modify Object : <PrimaryObjectSpec>.<SubObjectPathSpec> +

 .Method-Name : value>[,Method Name: <value> , …] +

 [,<SubObjectPathSpec>.MethodName:<value>, …..]

where,
<PrimaryObjectSpec> can be (<Primary Object Type Keyword>, <Primary Object Identifier
Formula>)
<SubObjectPathSpec> is given as CollectionName [<Index Formula>, [<Condition>]]
<MethodName> refers to the name of the method in the specified path.
<Index Formula> should return a number which acts as a position specifier in the Collection of
Objects satisfying the given <condition>.

Sample Request Format XML file for Modifying Ledger Object
<ENVELOPE>

<HEADER>

<VERSION>1</VERSION>

<TALLYREQUEST>IMPORT</TALLYREQUEST>

<TYPE>DATA</TYPE>

<SUBTYPE>Ledger</SUBTYPE>

<ID>All Masters</ID>

</HEADER>

<BODY>

<DESC>

<STATICVARIABLES>

<SVCURRENTCOMPANY>Demo Company</SVCURRENTCOMPANY>

</STATICVARIABLES>

</DESC>

<TALLYMESSAGE>

<LEDGER NAME="Customer 1" RESERVEDNAME="">
252

TDL Reference Manual

<ADDRESS.LIST TYPE="String">

<ADDRESS>Abc</ADDRESS>

<ADDRESS>Def</ADDRESS>

</ADDRESS.LIST>

<MAILINGNAME.LIST TYPE="String">

<MAILINGNAME>Customer 1</MAILINGNAME>

</MAILINGNAME.LIST>

<ALTEREDON>20090112</ALTEREDON>

<NAME TYPE="String">Customer 1</NAME>

<CURRENCYNAME>Rs.</CURRENCYNAME>

<PINCODE>560001</PINCODE>

<PARENT>Sundry Creditors</PARENT>

<ISDEEMEDPOSITIVE TYPE="Logical">Yes</ISDEEMEDPOSITIVE>

<SORTPOSITION> 1000</SORTPOSITION>

<OPENINGBALANCE>1.00</OPENINGBALANCE>

<LANGUAGENAME.LIST>

<NAME.LIST TYPE="String">

<NAME>Customer 1</NAME>

<NAME>Alias</NAME>

</NAME.LIST>

<LANGUAGEID> 1033</LANGUAGEID>

</LANGUAGENAME.LIST>

</LEDGER>

</TALLYMESSAGE>

</BODY>

</ENVELOPE>

7. Writing Remote Compliant TDL Reports
TDL programmer can optimize the performance of the Remote compliant TDL by minimizing the
server request call. Below mentioned are the guidelines to optimize the Remote Compliant TDL
Reports.

7.1 Fetching the single Object
When an entire Report requires multiple methods of a single Object, then Object can be pre
fetched with required methods. In this approach only one server call is made to fetch the all the
required methods.
 253

TDL Reference Manual
Example:
[Report: Final Led Report]

Form : Final Led Report

Fetch Object : Ledger : LedgerName: Name,Ledger Contact,+

 Ledger Phone,TBalOpening, TBalClosing

7.2 Repeating Lines over a Collection
Following techniques are used to optimize the performance when a line is repeated over a collec-
tion in a report to be displayed on the client.

7.2.1 Fetching the Methods
Whenever a collection is reffered to in a Report,the required methods needs to be explicitly
fetched from the server. It is mandatory to specify fetch in the Collection for all methods which are
used in the fields.If fetch is not used then the data will not be displayed in the field.
[Part: LedReport]

Line : LedReportDetails

Repeat : LedReportDetails : Ledger

Scroll : Vertical

[Line: LedReportDetails]

Fields : Led Name

Right Field : LedClosingBalance

[Field: Led Name]

Use : Name Field

Set as : $Name

[Field: LedClosingBalance]

Use : Amount Forex Field

Set as : $ClosingBalance

[#Collection: Ledger]

Fetch : Name,Closing Balance

7.2.2 Function inside the Repeat
When Lines are repeated over a Collection and a function is used at the field level,then each
repeat will trigger an additional server request for function call.In this scenario entire function call
logic can be moved to ‘Compute’ of the repeated Collection. The later approach will do only one
server request. Hence performance is drastically improved.
254

TDL Reference Manual

[Part: LedReport]

Lines : LedReportDetails

Repeat : LedReportDetails : Ledger

Scroll : Vertical

[Line: LedReportDetails]

Fields : Led Name

Right Fields: LedClosingBalance, LedSalesTotal

[Field: Led Name]

Use : Name Field

Set as : $Name

[Field: LedClosingBalance]

Use : Amount Forex Field

Set as : $ClosingBalance

[Field: LedSalesTotal]

Use : Amount Forex Field

Set as : $LedgerSalesTotal

[#Collection: Ledger]

Fetch : Name, Closing Balance

Compute : LedgerSalesTotal:+

 $$AsReqObj:$$FilterAmtTotal:LedVouchers:MyParty:$Amount

7.2.3 Repeating over Period Collection
In Reports where lines are repeated over Period Collection and values of the each column is cal-
culated over a period for the required object. For example in Sales Register value of each column
is calculated based on a period and object Voucher Type. In this scenario, an additional computa-
tional method needs to be added to Period Collection to fetch the values for each column.

[#Collection: Period Collection]

 Compute : TBalDebits : $TBalDebits:VoucherType:#VoucherTypeName

 Compute : TBalCredits: $TBalCredits:VoucherType:#VoucherTypeName

 Compute : TBalClosing: $TBalClosing:VoucherType:#VoucherTypeName
 255

TDL Reference Manual
7.3 Using the same Collection in more than one Report
When more than one Report requires different methods of the Objects of the same Collection then
using the same collection with all the methods fetched in it reduces the performance.This can be
improved in the following ways

7.3.1 Fetching the required methods locally at Report
In the following code snippet, Sample Report1 requires Opening Balance of a Ledger where as
Sample Report2 requires Closing Balance. Instead of modifying the Collection to fetch both
Opening Balance and Closing Balance, same is localized in respective Reports.

[Report: Sample Report1]

Local : Collection : Ledger : Fetch : Opening Balance

[Report: Sample Report2]

Local : Collection : Ledger : Fetch : Closing Balance

7.3.2 Seperate Collections for fetching different methods
In the following code snippet two Collections are created for fetching opening balance and closing
balance. Later first Collection can be utilized in the ‘Sample Report1’ and second one in the
‘Sample Report2’

[Collection: Fetch Opening Balance]

Type : Ledger

Fetch : Opening Balance

[Collection: Fetch Closing Balance]

Type : Ledger

Fetch : Closing Balance
256

User Defined Functions
TDL is a comprehensive 4GL language which gives tremendous power in the hands of the pro-
grammer by providing data management, complex report generation and screen design capabili-
ties using only a few lines of code, leading to rapid development. Till now TDL had very few
aspects of the procedural programming.
To mention a few

Value calculations were achieved using System Formula or by writing external methods
at object level.
Repetitive execution of certain lines of code was possible using certain platform defined
functions like $$CollectionField, $$CollectionAmtTotal etc. The functions used to take
care of these implicitly.
Sequential execution of certain segments of code was achieved by using Action List.

Now with the introduction of “User Defined Functions”, a path breaking development in the history
of TDL, procedural programming aspects are introduced into the language along with preserving
the basic nature of a definition language.

1. Functions – In General
In procedural languages Functions are called as Sub routine or Procedures.
If it is required to execute a certain set of statements repeatedly to achieve a certain functionality
it is not a good programming practice to write the same set of statements in the program again
and again.

For example:
n separate set of statements in a computer program requires the sum of two numbers for some
complex computation. Each statement will repeatedly compute a+b with different set of a and b.
To avoid this a function is created which will accept a and b and return the result ie the sum to the
calling program. This reduces the no of lines in the code along with improving code readability.
A function accepts certain values processes the values in a certain manner and finally returns a
value to the calling program. The values which a function accepts or the calling program passes
to the function are called parameters and the result which is passed by the function to the calling
program is called the return value.
 257

TDL Reference Manual
A function is mainly used for some of the following purposes:
1. Repeating a block of code
2. Perform some calculations
3. To execute set of statements

2. Functions – In TDL
In TDL prior to Tally.ERP 9 Functions were defined by Platform and TDL programmer could only
call the function to achieve a certain functionality. From Tally.ERP 9 onwards functions can be
defined in TDL layer. User Defined Function in TDL has been provided as a Definition which
allows user to specify a set of actions/statements to be executed in the order as specified.
Traditionally TDL is a non procedural language, action driven language. The sequence of
execution was not in the hands of programmer. But with this development in a Function Definition
Conditional evaluation of statements and looping is made possible. User defined Functions
basically can be used for performing complex calculations or executing a set of actions serially.
Function can accept parameter(s) as input and return a ‘Value’ to the caller.

Functions give following benefits to the TDL programmer:
Allows conditional execution/evaluation of statements
Execution of a set of statements repeatedly generally referred to as loops
To define variables and store values from intermediate calculation / process
To accept parameters from the calling segment of code
To work on data elements like, getting an object from the calling context, defining the
function execution context, looping on the objects of a collection etc.
Return a ‘Value’ to the caller of the function
Perform a set of actions sequentially/conditionally or repeatedly without returning a
value.

With this development the programmers can write business functions with complex computations
by themselves without platform dependency.

3. Function – Building Blocks
In TDL Function is also a definition. It has two blocks

1. Definition Block
2. Procedural Block

A glimpse into the function .
[Function : Function Name]

 ;; Definition Block
 ;; Parameter Specification

Parameter: Parameter 1 : Datatype

Parameter: Parameter 2 : Datatype
258

TDL Reference Manual

 ;; Variable Declarations
Variable : Var 1 : Number

Variable : Var 2 : String

 ;; Explicit Object Association
Object : ObjName: ObjectType

 ;;Return Value
Returns :Datatype

 ;;Definition Block Ends here
 ;;Procedural Block

Label 1 : Statement 1

Label 2 : Statement 2

|

|

Label n : Statement n

 ;; Procedural Block Ends here

3.1 Definition Block
The definition Block is utilized for following purpose

3.1.1 Parameter specification
This is used to specify the list of parameters which passed by the calling code. The values thus
obtained are referred to in the function with these variable names. The syntax for specifying the
same is given below

Syntax

PARAMETER: <Variable Name> :<Data Type of the Variable>

Where,
<Variable Name> is the name of the Variable which holds the parameter send by the caller of the
Function.
<Data Type of the Variable> is the Data type of the Variable send by the caller of the Function

Example:
The Function ‘FactorialOf’ receives number as parameter from the Caller.

[Function : FactorialOf]

Parameter : InputNumber : Number

3.1.2 Variable declaration
If a Function requires some Variable(s) for intermediate calculation, then those Variable(s) needs
to be defined. The scope of these Variable(s) will be within the Function and looses its value after
exiting the Function.
 259

TDL Reference Manual
Syntax

VARIABLE : <Variable Name> [:<Data Type of the Variable>]

Where,
<Variable Name> is the name of the Variable
<Data Type of the Variable> is the Data type of the Variable.
Datatype is optional. If datatype is specified a separate Variable definition is not required (these
are considered as inline variables). If data type is not specified the interpreter will look for a
variable definition with the name specified.

Example:
The Function ‘FactorialOf’ requires intermediate Variables ‘Counter’ and ‘Factorial’ for calculation
within the Function Definition.

[Function : FactorialOf]

Parameter : InputNumber : Number

Variable : Counter : Number

Variable : Factorial : Number

3.1.3 Static Variable declartion
Static Variable is a Variable, whose value persists between successive calls to a Function.
The scope of the static variable is limited to the Function where in which it is declared and exists
for the entire session.

Syntax

STATIC VARIABLE : <Variable Name> [:<Data Type of the Variable>]

Where,
<Variable Name> is the name of the Static Variable
<Data Type of the Variable> is the Data type of the Static Variable.
Datatype is optional. If datatype is specified a separate Variable definition is not required (these
are considered as inline variables). If data type is not specified the interpreter will look for a
variable definition with the name specified.

Example:
The static variable ‘Sample Static Var’ retains the value between successive calls to Function
‘Sample Function’

[Function : Sample Function]

Static Variable : Sample Static Var: Number
260

TDL Reference Manual

3.1.4 Return value specification
If a Function returns a value to the caller, then its data type is specified by using ‘RETURNS’
statement.

Syntax

RETURNS: <Data Type of the Return Value>
Where,
<Data Type of the Return Value > is the Data type of the return value of the Function

Example:
The Function ‘FactorialOf’ returns value of type ‘Number’ to the caller of the Function
[Function : FactorialOf]

Parameter : InputNumber: Number

Returns : Number

Variable : Factorial : Number

3.1.5 Object specification
Function will inherit the Object context of the caller. This can be overridden by using the attribute
Object for function definition. This now becomes the current object for the function.

Syntax

Object: <ObjType>:<ObjIdValue>

Where,
<ObjType> is the type of the object and <ObjIdValue> is the unique identifier of the object.

Example:
The Function ‘Sample Function’ will be in the context of the Ledger ‘Party’
[Function : Sample Function]

Object : Ledger : “Party”

3.2 Procedural Block
This block contains a set of statements. These statements can either be a programming construct
or can be an Action specification. Every statement inside the procedural block has to be uniquely
identified by a label specification

Syntax

LABEL SPECIFICATION : Programming Construct

 Or
LABEL SPECIFICATION : Action: Action Parameter
 261

TDL Reference Manual
Example:
The Function ‘DispStockSummary’ is having two Actions with Label.
[Function : DispStockSummary]

01: Display: Stock Summary

02: Display: Stock Category Summary

4. Programming Constructs-In Function

4.1 Conditional Constructs
4.1.1 IF–ENDIF
The ‘IF–ENDIF’ statement is a powerful decision making statement and is used to control the flow
of execution of statements. It is basically two-way decision statement and is used in conjuncti
with an expression. Initially expression will be evaluated and based on the whether expression is
true or false, it transfers the execution flow to a particular statement.

 Figure 1.1 Flow Chart for IF – ENDIF

Syntax

 IF : <Condition Expression>

 STATEMENT 1

 …

 STATEMENT N

 ENDIF
262

TDL Reference Manual

Example:
If Function parameter sent to Function ‘FactorialOf’ is less than zero then it is multiplied by -1 to
find the absolute value.

[Function : FactorialOf]

Parameter : InputNumber : Number

Returns : Number

Variable : Counter : Number

Variable : Factorial : Number

1 : SET : Counter : 1

2 : SET : Factorial: 1

3 : IF ##InputNumber < 0

4 : SET : InputNumber: ##InputNumber * -1

5 : END IF

6 : WHILE : ##Counter <= ##InputNumber

7 : SET : Factorial: ##Factorial * ##Counter

8 : SET : Counter : ##Counter + 1

9 : END WHILE

10: RETURN ##Factorial

4.1.2 DO–IF
When a IF-ENDIF statement block contains only one statement, then the same can be written in
single line by using DO-IF statement.

Syntax

DO IF: <Condition Expression> :STATEMENT

Example:
If Function parameter sent to Function ‘FactorialOf’ is less than zero then it is multiplied by -1 to
find the absolute value. IF - END IF statement is re written using DO - IF statement.

[Function : FactorialOf]

Parameter : InputNumber : Number

Returns : Number

Variable : Counter : Number

Variable : Factorial : Number

1 : SET : Counter : 1

2 : SET : Factorial : 1
 263

TDL Reference Manual
3 : DO IF : ##InputNumber < 0 : ##InputNumber * -1

4 : WHILE : ##Counter <= ##InputNumber

5 : SET : Factorial: ##Factorial * ##Counter

6 : SET : Counter : ##Counter + 1

7 : END WHILE

8 : RETURN ##Factorial

4.1.3 IF–ELSE–ENDIF
The IF–ELSE–ENDIF statement is an extension of the simple IF-ENDIF statement. If condition
expression is true, then true block statement(s) are executed; otherwise the false block state-
ment(s) are executed. In either case, either true block or false block will be executed, not both.

 Figure 1.2 Flow Chart for IF – ELSE - ENDIF

Syntax

IF : <Condition Expression>

 STATEMENT 1

 …

 STATEMENT N

 ELSE

 STATEMENT 1

 …

 STATEMENT N

 ENDIF
264

TDL Reference Manual

Example:
Finding greatest of three numbers

[Function : FindGreatestNumbers]

Parameter : A : Number

Parameter : B : Number

Parameter : C : Number

RETURNS : Number

01 : IF : ##A > ##B

02 : IF : ##A > ##

03 : RETURN : ##A

04 : ELSE

05 : RETURN : ##C

06 : END IF

07 : ELSE

08 : IF : ##B > ##C

09 : RETURN : ##B

10 : ELSE

11 : RETURN : ##C

12 : END IF

13 : END IF

4.2 Looping Constructs
4.2.1 WHILE – ENDWHILE
In looping, a sequence of statements is executed until some conditions for termination of the loop
are satisfied. A typical loop consists of two segments, one known as the body of the loop and the
other known as the control statement. The control statement checks condition and then directs the
repeated execution of the statements contained in the body of the loop.
The WHILE –ENDWHILE is an entry controlled loop statement. The condition expression is
evaluated and if the condition is true, then the body of the loop is executed. After the execution of
the statements within the body, the condition expression is once again evaluated and if it is true,
the body is executed once again. This process of repeated execution of the body continues until
the condition expression finally becomes False and the control is transferred out of the loop.
 265

TDL Reference Manual
 Figure 1.3 Flow Chart for WHILE – ENDWHILE

Syntax

WHILE : <Condition Expression>

 STATEMENT 1

 …

 STATEMENT N

 ENDWHILE

Example:
The Function ‘FactorialOf’ repeats statements 4 and 5 till given condition is satisfied.
[Function : FactorialOf]

Parameter : InputNumber : Number

Returns : Number

Variable : Counter : Number

Variable : Factorial : Number

1 : SET : Counter : 1

2 : SET : Factorial: 1

3 : WHILE : ##Counter <= ##InputNumber

4 : SET : Factorial: ##Factorial * ##Counter

5 : SET : Counter : ##Counter + 1

6 : END WHILE

7 : RETURN ##Factorial
266

TDL Reference Manual

4.2.2 WALK COLLECTION – END WALK
If a Collection has ‘n’ Objects then WALK COLLECTION – ENDWALK will be repeated for ‘n’
times. Body of the loop is executed for each object in the collection, making it the current context.

 Figure 1.4 Flow Chart for WALK COLLECTION – ENDWALK

Syntax

WALK COLLECTION : <Collection Name>

 STATEMENT 1

 …

 STATEMENT N

 ENDWALK

Example:
Walking over all the Vouchers and counting the same
[Collection : Vouchers Coll]

Type : Voucher

[Function : CountVouchers]

Returns : Number

Variable : Count : Number

001 : SET : Count : 0

002 : WALK COLLECTION : Vouchers Coll

003 : SET: Count : ##Count + 1

004 : END WALK

005 : RETURN : ##Count
 267

TDL Reference Manual
4.3 Control Constructs
Loops perform a set of operations repeatedly until the condition expression satisfies given
condition or Collection is exhausted. Sometimes, when executing the loop, it becomes desirable
to skip the part of the loop or to exit the loop as a certain condition occurs or to save the current
state and return back to the current state later.

4.3.1 BREAK
When a Break statement is encountered inside the loop, the loop is immediately exited and
control is transferred to the statement immediately following the loop. BREAK statement can be
used inside the WHILE – END WHILE and WALK COLLECION – END WALK. When loops are
nested, the Break would only exit from the loop containing it.

Syntax

BREAK

Example:
In Function ‘PrintNumbers’ loop is running from 1 to 10. But because of BREAK statement loop
will be terminated as counter reaches the 6.
[Function : PrintNumbers]

Variable : Counter : Number

1 : SET : Counter : 1

2 : WHILE : ##Counter < = 10

3 : LOG : ##Counter

4 : IF : ##Counter > 5

5 : BREAK

6 : END IF

7 : SET : Counter : ##Counter + 1

8 : ENDWHILE

9 : RETURN

4.3.2 CONTINUE
In some scenarios instead of terminating the loop, loop needs to be continued with next iteration
after skipping any statements in between. For this purpose CONTINUE statement can be used.
CONTINUE statement can be used inside the WHILE – END WHILE and WALK COLLECION –
END WALK.

Syntax

CONTINUE
268

TDL Reference Manual

Example:
Function to Count total number of Journal Vouchers

[Collection : Vouchers Coll]

Type : Voucher

[Function : CountJournal]

Returns : Number

Variable : Count : Number

01 : SET : Count : 0

02 : WALK COLLECTION: Vouchers Coll

03 : IF : NOT $$IsJournal:$VoucherTypeName

04 : CONTINUE

05 : ENDIF

06 : Count : ##Count + 1

07 : END WALK

08 : RETURN : ##Count

4.3.3 START BLOCK – END BLOCK
START BLOCK –- END BLOCK has been introduced to save the current state and execute some
actions within the block and return back to the original state. This is handy in cases where the
Object context needs to be temporarily switched for the purpose of executing some actions.
Current source and target object contexts are saved and the further statements within the START
and END BLOCK section gets executed and once END BLOCK is encountered, the Object
context is restored back to the original state.

Syntax

START BLOCK

 Block Statements

END BLOCK

Example:
10 : WALK COLLECTION : EDCollDetailsExtract

11 : INSERT COLLECTION OBJECT: InventoryEntries

12 : SET : QtyVar : $$String:$Qty + " Nos"

13 : SET : AmtVar : $$String:$Amt

14 : START BLOCK

15 : SET OBJECT

16 : SET VALUE : ActualQty : $$AsQty:##QtyVar

17 : SET VALUE : BilledQty : $$AsQty:##QtyVar
 269

TDL Reference Manual
18 : SET VALUE : Amount: $$AsAmount:##AmtVar

18A: END BLOCK

19 : ET TARGET : ..

20 : SET VALUE : StockItemName: $Item

21 : END WALK

;; For Explanation on Object context, Source Object and Target Object,
;; Set Target, Set Object, please refer Topic Function Execution - Object Context

In the above code snippet, EDCollDetailsExtract collection is being walked over and the
values for Objects within Voucher Entry are being set.

4.3.4 RETURN
This statement is used to return the flow of control to the calling program with or without returning
a value. When return is used the execution of the function is terminated and the calling program
continues from where it had called the function.

Syntax

RETURN : <value expression>

Where,
<value expression> is optional ie it can either return a value or return void.

Example:
The Function ‘FactorialOf’ returns factorial of number
[Function : FactorialOf]

Parameter : InputNumber : Number

Returns : Number

Variable : Counter : Number

Variable : Factorial : Number

1 : SET : Counter : 1

2 : SET : Factorial: 1

3 : WHILE : ##Counter <= ##InputNumber

4 : SET : Factorial : ##Factorial * ##Counter

5 : SET : Counter : ##Counter + 1

6 : ENDWHILE

7 : RETURN : ##Factorial
270

TDL Reference Manual

5. Calling a Function
A Function can be invoked in two ways.

1. By using a “CALL” action –This is mainly used when the function does not return a value.
It only performs a certain functionality.

2. By Using the prefix $$ with the function name within a value expression-This is used
when return value is expected from the function execution. This value is used in the value
expression of the calling program.

5.1 Using Action – CALL
Action CALL can be used to call a function. It can be invoked a Key, Menu Item or Button.

Syntax

CALL : <Function Name> [: <Parameter List>]

Where,
<Function Name> is the name of a user defined function.
<Parameter List> is the parameters accepted by the function.

Example:
Calling the Function as a procedure with CALL action
[#Menu : Gateway of Tally]

Button : Call Function

[Button : Call Function]

Key : Alt + F9

Title : “Call Function”

Call : DispStaturoryRpts

5.2 Using – Symbol Prefix $$
Function can be executed by prefixing it with symbol ‘$$’. This can be used inside a value expres-
sion or as a value for Set As attribute of the field. The value returned from the function is used.

Syntax

$$FunctionName :<Parameter List>

Where,
<Function Name> is the name of a user defined function.
<Parameter List> is the parameters accepted by the function
 271

TDL Reference Manual
Example:
Calling the User Defined Function at Field using $$
[Field : Call Function]

Use : Number Field

Set as : $$FactorialOf:#InputFld

6. Function Execution – Object Context
We all are aware that in TDL any function, method or formula gets evaluated in the current object
context. All platform defined functions will be executed with current object and requestor context.

With the introduction of User Defined Functions another type of context is introduced. This is
known as the target context.

6.1 Target Object Context
Target Context mainly refers to the object context which can be set inside the function which
allows the function to perform manipulation operations for that object ie alteration and creation.
The object context of the caller and target object context can be different. It will now be possible to
obtain the values from caller object context and alter the values of the target object with those
values.

User has option to override the context within the function later or use the same context being
passed. He can change the current and target object at any point and also switch target and
current object to each other.
The fuction $$TgtObject is used to evaluate the value of expression in the context of target object.

6.2 Parameter Evaluation Context
It is important to note that the parameter values which are passed to the functions are always
evaluated in context of the caller. Parameter specification within the functions is just to determine
the datatype, order and no of parameters. These are basically the placeholders for values passed
from caller object context. The target object context or context switch within the function does not
affect the initial values of the parameters. Later within the function these values can be altered
just like ordinary variables.

 During Tally Startup Tally executes a function with the name “Tally-
MAIN”

 Internal functions always override if both exists in same name.
272

TDL Reference Manual

6.3 Return Value Evaluation
We have already discussed above that function can return a value. This can be specified by the
function by indicating the data type of the value it returns, no specification assumed as a void
function (a function which does not return a value). Each statement (Actions discussed in the next
section) used can return a value. This depends on the individual action. Some actions may not
return value. The data type of return value is also predefined by the action. Return value of the
last action executed can be extracted using an internal function ‘$$LastResult’. Any error
messages generated from the system can be obtained with $$LastError. This can only be used to
determine the result of the intermediate statements used within the function.The final value which
is to be returned from the function has to be explicitly given using the RETURN construct
discussed in previous section.

7. Valid Statements inside a Function
The statements used inside the procedural block of a function can either be a

Programming Construct as discussed in the previous sections
It can be a TDL action

There have been major changes in some actions to work especially with functions. Some new
actions have been introduced as well. Let us now discuss the various Actions used inside
functions

7.1 Actions for Variable Manipulation
TDL provides various new action that can be used inside User Defined Functions.

7.1.1 SET
This action is used to assign a value for a variable.

Syntax

SET : <VariableName> : <Value Expression>

Where,
<Variable Name> is the variable for which value needs to be assigned
<Value Expression> is the formula evaluating to value

Example:
[Function : FactorialOf]

Parameter : InputNumber : Number

Returns : Number

Variable : Counter : Number

Variable : Factorial : Number

1 : SET : Counter : 1

2 : SET : Factorial: 1
 273

TDL Reference Manual
3 : WHILE : ##Counter <= ##InputNumber

4 : SET : Factorial : ##Factorial * ##Counter

5 : SET : Counter : ##Counter + 1

6 : ENDWHILE

7 : RETURN: ##Factorial

7.1.2 EXCHANGE
This Action is used exchange (swaps) the value of two variables. But only Variables of the same
Data type can be exchanged.

Syntax

 EXCHANGE : <First Variable Name> : <Second Variable Name>

Where,
<First Variable Name> and <Second Variable Name> are the Variables whose values needs to
be swapped.

Example:
01: EXCHANGE:Var1:Var2

In the above statement both variables are of type Number and their values are swapped.

7.1.3 INCREMENT
This Action is used to increment the value of a Variable by 1. INCREMENT is used inside the loop
to increment value of the control variable by one.

Syntax

 INCREMENT : <Variable Name>

Where,
<variable Name> is the name of the Variable whose value need to be incremented by 1.

Example:
[Function : FactorialOf]

Parameter : InputNumber : Number

Returns : Number

Variable : Counter : Number

Variable : Factorial : Number

1 : SET : Counter : 1

2 : SET : Factorial: 1

3 : WHILE : ##Counter <= ##InputNumber

4 : SET : Factorial : ##Factorial * ##Counter
274

TDL Reference Manual

5 : INCREMENT: Counter

6 : ENDWHILE

7 : RETURN : ##Factorial

7.1.4 DECREMENT
This Action is used to decrement the value of a Variable by 1. DECREMENT is used inside the
loop to decrement the value of the control variable by one.

Syntax

 DECREMENT : <Variable Name>

Where,
<Variable Name> is the name of the Variable whose value need to be decremented by 1.

Example:
In Function ‘PrintNumbers’ loop is running from 10 to 1.

[Function : PrintNumbers]

Variable : Counter : Number

1 : SET : Counter : 10

2 : WHILE : ##Counter > 0

3 : LOG : ##Counter

4 : DECREMENT : Counter

5 : ENDWHILE

6 : RETURN

7.2 Action Enhancements and New Actions
The global actions are enhanced, so that they can be called from the User Defined Functions.
Some new actions are also introduced.

7.2.1 Global Actions- Alter / Execute / Create
These are the global actions meant for the purpose of opening a report in the modes specified.
The return value of these actions is FALSE if user rejects the report, else TRUE if he accepts it.

Syntax

Display/Alter/Execute/Create: Report Name

Example:
The Function ‘CreateReport’ opens Leadger Creation screen

 275

TDL Reference Manual
[Function : CreateReport]

 01 : Create : Ledger

7.2.2 Global Actions – MENU, DISPLAY
These global actions are used to invoke a menu or a report in display mode. The return value of
these actions is TRUE if Ctrl+Q is used to reject the report (i.e. via Form Reject To Menu action).
It returns FALSE when user uses Esc to reject the report (i.e. via Form Accept action). For menu
this is only applicable if it is the first in the stack.

Syntax

Menu : <Menu name>

Display : <ReportName>

Example:
The Function ‘DispPaySheet’ opens Pay Sheet and by pressing Escape it will pop up the ‘State-
ments of Payroll’ Menu.
[Function : DispPaySheet]

01 : Menu : Statements of Payroll

02 : Display : Pay Sheet

7.2.3 MSG BOX
This action is used to Display a message box to user. It comes back to the original screen on the
press of a key. This is can be used by the programmers to display intermediate values of variables
during calculations thus helping in error diagnosis.

Syntax

 MSG BOX: <Title Expression>:<Message Expression>:<GreyBack Flag>

Where,
<Title Expression> is the value is displayed on the title bar of the message window.
<Message Expression> is the actual message which is displayed in the box. This can be an
expression as well i.e. the variable values can be concatenated and displayed along with the
message in the display area of the box.
<GreyBack Flag> indicates if the background window to be greyed out during message display. It
takes two values ie YES/NO

Example:
01: MSGBOX:”Return Value”:##Factorial
276

TDL Reference Manual

7.2.4 QUERY BOX
This action is used to Display a confirmation box to user and ask for an yes/no response.

Syntax

QUERY BOX: <Message Expression>:<GreyBack Flag>:<EscAsYes>

Where,
<Message Expression> is the message which is displayed inside the box. This can be an
expression.
<GreyBack Flag> Same as in msg box .
<Escape as Yes>This is a flag which indicates the response when the user presses ESC key.
This can be specified as YES/NO. A YES value for this flag indicates that the response should be
treated as YES on press of an ESC key.

7.2.5 Progress Bar Actions
Sometimes a Function may take some time to complete the task. It is always better to indicate the
user that the task is occurring, how long the task might take and how much work has already been
done. One way of indicating the amount of progress, is to use an animated image. This can be
achieved by using following Actions.

START PROGRESS
SHOW PROGRESS
END PROGRESS

7.2.6 START PROGRESS
This Action setup the Progress Bar by mentioning total number of steps involved in the task. In
addition to this, Title, Sub Title and Subject of the Progress Bar also can be given as parameter.

Syntax

 START PROGRESS : <Number of steps> :< Title> [:< Sub Title> :< Subject>]

Where,
<Number of steps> denotes the whole task quantified as a number,
<Title>,<Sub Title> and <Subject> Shows the Title, Sub Title and Subject of Progress Bar
respectively.

Example:
START PROGRESS: ##TotalSteps:”TDS Migration”:+

 @@CmpMailName:”MigrationgVouchers..”

7.2.7 SHOW PROGRESS
This Action shows the current status of the task to the user.
 277

TDL Reference Manual
Syntax

SHOW PROGRESS : <Number of Steps Completed>

Where,
<Number of Steps Completed> is a number denotes the amount of work completed.

Example:
Progress Bar showing the progress of the task

SHOW PROGRESS:##Counter

7.2.8 END PROGRESS
When a task is completed, Progress Bar can be stopped by using Action END PROGRESS. This
Action does not take any parameter.
Syntax

END PROGRESS

7.2.9 LOG
During expression evaluation, intermediated values of the expression can be passed to calculator
window and a log file ‘tdlfunc.log’ inside the application directory. This is very much helpful for
debugging the expression. By default logging is enabled inside the function.

Syntax

 LOG : < Expression>

Where,
<Expression> whose value need to be passed to the calculator window.

Example:
While finding the factorial of a number, intermediated values are outputted to Calculator window
using LOG action
[Function : FactorialOf]

Parameter : InputNumber : Number

Returns : Number

Variable : Counter : Number

Variable : Factorial : Number

1 : SET : Counter : 1

2 : SET : Factorial: 1

3 : WHILE : ##Counter <= ##InputNumber

4 : SET : Factorial : ##Factorial * ##Counter

5 : SET : Counter : ##Counter + 1

5a: LOG : ##Factorial
278

TDL Reference Manual

6 : ENDWHILE

7 : RETURN : ##Factorial

7.2.10 SET LOG ON
While debugging a Function, some times it is required to conditionally Log the values of an
expression. If logging is stopped, then logging can be re-started based on the condition Action
SET LOG ON. This Action does not require any parameter.
Syntax

SET LOG ON

7.2.11 SET LOG OFF
This Action is used in conjunction with SET LOG ON. Log can be stopped by Action SET LOG
OFF. This Action does not require any parameter.
Syntax

SET LOG OFF

7.2.12 SET FILE LOG ON
This Action is similar to SET LOG ON. SET FILE LOG ON is used to conditionally Log the values
of an expression to log file ‘tdlfunc.log’. This Action does not require any parameter.
Syntax

SET FILE LOG ON

7.2.13 SET FILE LOG OFF
This Action is used in conjunction with SET FILE LOG ON. Logging the file ‘tdlfunc.log’ can be
stopped by Action SET LOG OFF. This Action does not require any parameter.
Syntax

SET FILE LOG OFF

7.3 Actions – For Object and Context Manipulation
As we have already seen in the previous sections functions can operate on 3 object contexts. ie
Requestor, Current Object and Target object context. When a function is invoked the target object
context will be same as the current object context of the caller, ie the target object will be set to the
current object.

Here we will discuss the various actions for manipulation of Object and Context.

7.3.1 NEW OBJECT
Creates a New object from object specification and sets it as target object. This Action takes only
Primary Object as Parameter.
 279

TDL Reference Manual
Syntax

NEW OBJECT: <ObjType>:<ObjIdValue>

Where
<ObjType> is the type of the object to be created and
<ObjIdValue> is the unique identifier of the object. If this is an existing object in DB then the
further manipulations are performed on that object else it creates a new object altogether.

Example:
01: NEW OBJECT:Stock Item :”My Stock Item”

This creates a new object in memory for Stock Item and sets it as the target object. Later by using
other methods of this target object can be set and saved to the Tally DB.

7.3.2 INSERT COLLECTION OBJECT
Inserts the new object of the type specified in collection and makes it as current target object. This
object is inserted into the collection at the end. This Action will take only Secondary Collection as
parameter.

Syntax

 INSERT COLLECTION OBJECT : <CollectionName>

Where,
<CollectionName> is the name of the Secondary Collection

Example:
01: INSERT COLLECTION OBJECT: Ledger Entries

Insets a new object Ledger Entries in memory under Voucher and sets it as the target object.
Later by using other methods of this target object can be set and saved to the Tally DB.

7.3.3 SET VALUE
Sets value of a method for the target object. The value formula is evaluated with respect to the
current object context. This can use the new method formula syntax. Using this it is possible to
access any value from the current object.

Syntax

SET VALUE: <Method Name>[: <Value Formula>]

Where,
<Method Name> is the name of the method and
<Value Formula> is the value which needs to be set to the method. It is optional. So that if the
second parameter is not specified, it searches for the same method in the context object and the
value is set based on it.
280

TDL Reference Manual

Example:
01: SET VALUE : Ledger Name : $LedgerName

02: SET VALUE : IsDeemedPositive : $IsDeemedPositive

03: SET VALUE : Amount : $Amount

The above statements setting the values of Ledger Entries Object from the current Object context.

Example:
Party 1 is a ledger under Group North Debtor and Party 2 is a Ledger under Group South Debtor.
After executing the following function Party 2 will also come under Group South Debtor.
[Function : Sample Function]

Object : Ledger : "Party 1"

01 : NEW OBJECT : Ledger : "Party 2"

;; absence of Value expression will assume that same method to be copied from source
02 : SET VALUE : Parent

03 : ACCEPT ALTER

7.3.4 RESET VALUE
Sets the value of the method using the Value Formula. If Value Formula is not specified it sets the
existing value to null.

Syntax

RESET VALUE : MethodName [: Value Formula]

Where,
<Method Name> is the name of the method and
<Value Formula> is an optional parameter and if it is used, it will reset the value of the method.

Example:
01 : SET VALUE : Ledger Name : $LedgerName

02 : RESET VALUE : Ledger Name : “New Value”

In the above code snippet RESET VALUE resets the value of the method ‘Ledger Name’

7.3.5 CREATE TARGET / ACCEPT CREATE
Accepts the Target Object to Company Data base. That is it saves the target object to the
Database. This creates a new object in the database if it does not exist else results in an error.
Syntax

 CREATE TARGET / ACCEPT CREATE

7.3.6 SAVE TARGET / ACCEPT
Accepts the Target Object to Company Tally DB. If another object exists in Tally DB with same
identifier then the object is altered else a new object is created.
 281

TDL Reference Manual
Syntax

 SAVE TARGET / ACCEPT

7.3.7 ALTER TARGET / ACCEPT ALTER
Accepts the Target Object to Company DB. Alters an exiting object in DB. If the object does not
exists it results in error.
Syntax

ALTER TARGET / ACCEPT ALTER

7.3.8 SET OBJECT
Sets the current object with the Object Specification. If no object specification is given the target
object will be set as the current object. Only Secondary Object can be used along with this
Action.

Syntax

SET OBJECT [: <Object Spec>]

Where,
<Object Spec> is the name of the Secondary Object.

Example:
[Function : Sample Function]

Object : Ledger : "My Test Ledger"

01 : LOG : $Name

02 : SET OBJECT : BillAllocations[1]

03 : LOG : $Name

04 : SET OBJECT : ..

05 : LOG : $Name

Initially the context object is Ledger so $Name give the name of Ledger. By Using ‘SET OBJECT’
current Object is changed to first Bill allocation. So second $Name is giving the Bill name. Fourth
line changes current Object back to Ledger using doted notation.

7.3.9 SET TARGET
Sets the target object with the Object Specification. If no object specification is given the current
object will be set as the target object.

Syntax

SET TARGET: <Object Spec>

Where,
<Object Spec> is the name of the Object
282

TDL Reference Manual

Example:
01 : SET TARGET : Group

This sets the target object as Group Object. Later by using other methods of this target object can
be set and saved to the Tally DB.

7.3.10 Usage of Object manipulation Actions:
Duplicating all payment Vouchers

[Function : DuplicatePaymentVouchers]

;;Process for each Payment Voucher
01 : WALK COLLECTION : My Vouchers

;; Create new Voucher Object as Target Object
02 : NEW OBJECT : Voucher

;;For New Object set methods from the First Object of the Walk Collection i.e from Current Object
03 : SET VALUE : Date : $Date

04 : SET VALUE : VoucherTypeName : $VoucherTypeName

05 : SET VALUE : Narration : $Narration + " Duplicated"

;; Walk over Ledger Entries of the current Object
05a: WALK COLLECTION : LedgerEntries

;;Insert Collection Object to the Target Object and become present Taget Object
06 : INSERT COLLECTION OBJECT : Ledger Entries

;;Set the Values of the Taget Object’s Method from Current Objects Methods
07 : SET VALUE : Ledger Name : $LedgerName

08 : SET VALUE : IsDeemedPositive : $IsDeemedPositive

09 : SET VALUE : Amount : $Amount

;;Set the Voucher Object as Target, (which is 1 level up in the hierarchy) as Voucher is already having
;;Object spec

10 : SET TARGET : ..

11 : END WALK

;;Save the Duplicated Voucher to the DB.
15 : CREATE TARGET

16 : ENDWALK

17 : RETURN
 283

TDL Reference Manual
284

What’s new in Tally.ERP 9 Release 1.5
In the release the major enhancements have taken place at the collection level and variable
framework as a whole, along with introduction to a new variable type "List Variable "

This documents talks in depth on the usage of context free constructs Source Var, Compute Var
and Filter Var in collection. The usage of $$TgtObject is now extended to work with collections as
well.

Also covered are a few general enhancements, function $$ContextKeyword and attribute Trigger
Ex at the field level which allows addition of values dynamically to table using TDL functions and
expressions.

Bug fixes and the enhancements in the previous release be referred from here as well

1. Collection Enhancements
TDL supports the hierarchical data base structure. While designing any report the objects are first
populated in collection before displaying them.

TDL also supports the concept of aggregate/summary collection for creating summarized reports.
In the aggregate collection during the evaluation following three sets of objects are available:

Source Objects : Objects of the collection specified in the Source Collection attribute.
Current Objects : Objects of the collection till which the Walk is mentioned
Aggregate Objects : Objects obtained after performing the grouping and aggregation

There are scenarios where some calculation is to be evaluated based on the source object or the
current object value and the filtration is done based on the value evaluated with respect to final
objects before populating the collection. In these cases to evaluate value based on the changing
object context is tiresome and some times impossible as well.

The newly introduced concept of collection level variables provides Object-Context Free process-
ing. The values of these inline variables are evaluated before populating the collection. The
sequence of evaluation of the collection attributes is changed to support the attributes Compute
Var, Source Var and Filter Var. The variables defined using attributes Source Var and Compute
 285

TDL Reference Manual
Var can be referred in the collection attributes By, Aggr Compute and Compute. The variable
defined by Filter Var can be referred in the collection attribute Filter.
The value of these variables can be accessed from anywhere while evaluating the current collec-
tion objects.

Sometimes it is not possible to get a value of the object from the current object context, in such
scenarios these variables are used.

1.1 Source Var
The attribute Source Var evaluates the value of based on the source object.

Syntax

Source Var : <Variable Name> : <Data Type> : <Formula>

<Variable Name> is name of variable.
<Data Type> is the data type of the variable.
<Formula> can be an expression formula which evaluates to value of the variable data type.

Example:
Source Var : Log Var: Logical : No

The value of the LogVar variable is set to NO

1.2 Compute Var
The attribute Compute Var evaluates the value of based on the sub object of the source object.

Syntax

Compute Var : <Variable Name> : <Data Type> : <Formula>

<Variable Name> is name of variable.
<Data Type> is the data type of the variable.
<Formula> can be an expression formula which evaluates to value of the variable data type.

Example:
Compute Var:IName : String : if ##LogVar then $StockItemName else +

 ##LogVar

1.3 Filter Var
The attribute Filter Var evaluates the value of based on the objects available in collection after the
evaluation of attributes Fetch and compute.
Syntax

Filter Var : MyFilVar : <Data Type> : <Formula>
286

TDL Reference Manual

<Variable Name> is name of variable.
<Data Type> is the data type of the variable.
<Formula> can be an expression formula which evaluates to value of the variable data type.

Example:
Filter Var : Fin Obj Var : Logical : $$Number:$BilledQty > 100

1.4 Sequence of Evaluation of Collection Attributes
The collection attributes are evaluated as per the following sequence before populating the collec-
tion :

1. Source collection
2. Source Var
3. Walk
4. Compute Var
5. By
6. Aggr Compute
7. Compute
8. Filter Var
9. Filter

With the introduction of these attributes the calls to function $$Owner, $$ReqObject, $$Filter-
Value, $$FilterAmt can be reduced.

1.5 Usage of the collection attributes Compute Var, Source Var, Filter Var
In this section the use cases where the collection attributes can be used are explained.

1.5.1 Usage of Compute Var in Simple Collection
When Compute Var is used in a simple collection then before populating the objects in collection
the Compute var is evaluated.

Consider the following Collection Definition :

[Collection : Test ComVar]

Type : Group

Compute Var : CmpVarColl : String : $Name

Compute : MyAmt : $$CollamtTotal: TestComVarSub:$OpeningBalance

[Collection : Test ComVar Sub]

Type : Ledger

Child Of :## CmpVarColl

Fetch : Name, OpeningBalance
 287

TDL Reference Manual
The sequence of evaluation is as follows :
1. The Type attribute is evaluated and the objects of specified type are identified.
2. Compute Var is evaluated and the name of first object i.e group name is set as a value of

the variable CmpVarColl.
3. For this selected group, the method $MyAmt is evaluated. This gives the total amount of

all the ledgers belonging to the group name in the variable CmpVarColl.
4. The steps 2, 3 are repeated for each group in the collection ‘Test Com Var’ .
5. After computing the value method $MyAmt for each group the collection is populated with

the objects.

The variable CmpVarColl can be referred also in the By, Aggr Compute and Filter attributes of col-
lection.

1.5.2 Usage of Source Var, Compute Var, Filter Var in Aggregate collection
When these collection attributes are used along with other attributes the sequence of evaluation is
as mentioned earlier. Let us try to understand this with the following collection definition:

[Collection : CFBK Voucher]

Type : Voucher

Filter : IsSalesVT

Compute Var : Src Var: Logical: $$IsSales:$VoucherTypeName

[Collection : Smp Stock Item]

Source Collection : CFBK Voucher

Source Var : Str Var: String : $VoucherNumber +

 "/" $VoucherTypeName

Walk : Inventory Entries

Compute Var : IName : String : if ##StrVar CONTAINS "12" then +

 $StockItemName else $StockItemName +

 "-" + $$String:##StrVar

By : IName: ##IName

Aggr Compute : BilledQty: SUM: $BilledQty

Filter Var : Fin Obj Var: Logical : $$Number:$BilledQty > 100

Filter : Final Filter

[System : Formula]

IsSalesVT : ##SrcVar

Final Filter : ##FinObjVar
288

TDL Reference Manual

The evaluation process is as follows:
1. The value of variable SrcVar is evaluated and referred in the Filter attribute of collection

CFBK Voucher.
2. In the collection Smp Stock Item, the value of variable Str Var is evaluated on the first

object of source collection CFBK Voucher.
3. Then Walk is performed and the Inventory entry objects are collected.
4. The value of variable IName is evaluated. If the Source Variable Src Var contains "12",

then IName Variable stores only Stock Item Name method else Stock Item Name + value
of the variable Str Var.

5. The grouping is done on the resultant value of IName variable.
6. The value of $BilledQty is computed.
7. The variable FinObjVar retains a logical value if method BilledQty is greater than 100
8. Based on the value of FinObjVar the filtering is done.
9. Finally the collection is populated with the filtered objects.

2. List Variables Introduced
The TDL programmer community is aware of the usage of variables and its usage as context free
structures in TDL. Till this release two types of variables were supported "Simple and Repeat".
The following scope can be defined for variables

Report Level – commonly referred to as Local Variable
System Level – commonly referred as Global variables
Function Level – Local variables used inside user defined functions

The variable framework is enhanced to support a new type of a variable called List Variable which
allows us to perform complex calculations on data available from multiple objects.

2.1 List Variable
List variable can store multiple values of single data type in the key: value format. Every single
value in the List variable is uniquely identified by a 'key'. The 'Key' is of type String by default and
is maintained internally.

List Var is alias of attribute List Variable.

Syntax

List Variable : <Variable Name> [: <Data Type>]

<Function Name> is name of the function.
<Variable Name> is name of variable.
<Data Type> is the data type of the variable. It is Optional. If data type is specified a separate
Variable definition is not required. Incase the data type is not specified a variable definition with
the same name must be specified.
 289

TDL Reference Manual
Example:
[Function : Test Function]

ListVariable : List Var : String

The variable 'List Var' can hold multiple string values.

Example:
[Report : Test Report]

ListVariable : List Var Rep : String

The variable 'List Var Rep' can hold multiple strings in the report scope.

The List variable provides a set of actions and internal function for the data manipulation which
will be explained in the following section.

2.2 List Variable Manipulation
List variable support various data manipulation operations. Following operations can be
performed on List variable:

1. Adding/Deleting Values
2. Populating List Var from a Collection – Action ListFill
3. Accessing Values using Function $$ListValue
4. Sorting the value in List Var

2.2.1 Adding/Deleting values in a List Variable
The actions used to add/delete values in the list variable are LIST ADD and LIST DELETE.

Action LIST ADD
The action LIST ADD is used to add the value in a List variable. The action LIST ADD adds single
value at a time to the list variable identified by a key. If the value is added to the list with duplicate
key, then the existing value is over written.
Syntax

 LIST ADD : <List Var Name> : <Key Formula> : <Value Formula>

LIST SET is alias for action LIST ADD.

<List Var Name> is the name of list variable.
<Key Formula> can be an expression formula which evaluates to unique string value.
<Value Formula> can be any expression formula which returns a value. The data type of the
value must be same as that of List variable.
290

TDL Reference Manual

Example:
LIST ADD : TestFuncVar : "Mobile" : 9340193401

LIST ADD : TestFuncVar : "Office" : 08066282559

LIST ADD : TestFuncVar : "Fax" : 08041508775

LIST ADD : TestFuncVar : "Residence" : 08026662666

The four values inserted in the list variable 'Test Func Var' are identified by the key values
'Mobile', 'Office', 'Fax' and 'Residence' respectively.

:
To add multiple values dynamically in the list variable, looping constructs WHILE, WALK COL-
LECTION etc can be used.

Action LIST DELETE
The action LIST DELETE is used to delete values from the List variable. The action LIST DELETE
allows to delete single value at a time or all the values in one go.
Syntax

 LIST DELETE : <List Var Name> [: <Key Formula>]

LIST REMOVE is an alias for LIST DELETE.

<List Var Name> is the name of list variable.
<Key Formula> can be an expression formula which evaluates to unique string value. In the
absence of key formula, all the values in the list will be deleted. In other words, if key formula is
omitted, it resets the list.

Example:
LIST DELETE : TestFuncVar : "Office"

The value identified by key 'Office' is deleted from the list variable 'Test Func Var'.

LIST DELETE : TestFuncVar

All the values in the list variable 'Test func Var' are removed. The list variable is empty after the
execution on the above action.

The same List is considered in explaining in further examples.
 291

TDL Reference Manual
2.2.2 Populating List variable from a collection
Instead of using the looping constructs, multiple values from a collection can be added to the list
variable in one statement. Action LIST FILL is used in this case.

Syntax

LIST FILL : <List Var Name> : <Collection Name : <Key Formula> +

 : <Value Formula>

<List Var Name> is the name of list variable.
<Collection Name> is the name of collection from which the values are fetched to fill the list
variable.
<Key Formula> can be an expression formula which evaluates to string value.
<Value Formula> can be any expression formula which returns a value. The data type of the
value must be same as that of List variable.

The action LIST FILL returns the number of items added to the list variable.

Example:
LIST FILL : TestFuncVar : Group:$Name:$Name

2.2.3 Accessing List variable values
To access the value from a list variable a function is to be used. TDL provides the different
functions to fetch the value from list variable identified by the given key.

Function ListValue
$$ListValue gives the value identified by the given key in the list variable.
Syntax

$$ListValue:<List Var Name>:<Key Formula>

<List Var Name> is the name of list variable.
<Key Formula> can be an expression formula which evaluates to string value.

Example:
$$ListValue:TestFuncVar:"Mobile"

The above function returns the values identified by the key 'Mobile' from the list variable 'Test func
Var' when the function is executed.

2.2.4 Sorting value in a List variable
By default the values in the list variable sorted in the order of entry. TDL provides the facility to
sort the values in the list variable either on key or value. The data type can be specified while
sorting on key. Following action allows to change the sort order:

1. List Key Sort
2. List Value Sort
3. List Reset Sort
292

TDL Reference Manual

These actions accept three parameters. First parameter is name of the List variable followed by
the sorting flag and a key data type.

In the absence of <key data type> natural sorting method is used. In natural sorting method, the
key data type is identified as one of the data types Date, Number and String.
Date data type accepts any valid date format. If it is not of data type and starts with a number or a
decimal then it is assumed as Number. If its neither Date nor Number then it's considered as
String.
Different data types are compared in the following order as Number, Date and String.

Action LIST KEY SORT
This action allows sorting the list on key value. If the data type specified while sorting the list is
different than the original, then this action will temporarily convert the original data type to the
specified data type while comparing the elements for sorting the list and the list will be sorted
based on the new data type specified. The original list and the key data type remains as it is on
which a new sorting can be applied based on some other data type at any other point of time.

Syntax

LIST KEY SORT : <List Var Name>[: <Asc/Desc flag> : <Key Data Type>]

LIST SORT is an alias of action LIST KEY SORT.
<List Var Name> is the name of list variable.
<Asc/Desc> can be YES/NO. YES is used sort the list in ascending order and NO for descend-
ing. If the flag is not specified then the default order is ascending.
<Key Data Type> can be String, Number etc. It's optional.

Example: 1
LIST KEY SORT : Test Func Var: YES : String

The values in the list variable are sorted in ascending order of the key.

Example: 2
In case a different data type is used for sorting then the key may become duplicate if the conver-
sion fails as per the data type specified for sorting. If the key becomes duplicate then the insertion
order of items in list variable is used for comparison.

LIST KEY SORT : Test Func Var: YES : Number

The action will convert the key to ZERO (0) for all the list items while comparing, as all the keys
are of type Strings. In this case the insertion order will be considered for sorting. As a result the
values in the list will be sorted in the following order: 9340193401, 08066282559, 08041508775,
and 08026662666
In case the key contains numeric values like "11", "30", "35" and "20" which can be converted to
number, then the list is sorted based on the key values else it converts them to ZERO and sorts
the list as per order of insertion.
 293

TDL Reference Manual
Action LIST VALUE SORT
The action LIST VALUES SORT sorts the list items based on the value. As there can be duplicate
values in the list the combination of key and value is considered as key for sorting duplicate
values.

Syntax

LIST VALUE SORT : <List Var Name>[: <Asc/Desc flag> : <Key Data Type>]

<List Var Name> is the name of list variable.
<Asc/Desc> can be YES/NO. YES is used sort the list in ascending order and NO for descend-
ing. If the flag is not specified then the default order is ascending.
<Key Data Type> can be String, Number etc. It's optional.

Example:
LIST VALUE SORT : Test Func Var: YES : String

The values in the list variable are sorted in ascending order of values.

Action LIST RESET SORT
The action LIST RESET SORT retains the sorting back to the order of insertion.

Syntax

 LIST RESET SORT: <List Var Name>

<List Var Name> is the name of list variable.

Example:
LIST RESET SORT : Test Func Var

The action resets the sort order of the list variable 'Test func Var' to the order of insertion.

2.3 Functions Used with List Variables
TDL supports some function for the general operation like finding the total number of items in a
list, checking whether the last action was successful etc.

2.3.1 Function ListValue
As explained earlier the function List Value to access the value from a list variable

2.3.2 Function ListCount
$$ListCount gives the total number of values available in the list variable.
Syntax

$$ListCount:<List Var Name>

<List Var Name> is the name of list variable.
294

TDL Reference Manual

Example:
$$ListCount:TestFuncVar

The above action returns the number of items in the list variable 'Test func Var' when the action is
executed.

2.3.3 Function ListFind
The function ListFind is used to search if the value belonging to a specific key is available in the
list variable. If the key is found $$ListFind returns TRUE otherwise it returns FALSE.
Syntax

$$ListFind:<List Var Name>:<Key Formula>

<List Var Name> is the name of list variable.
<Key Formula> can be an expression formula which evaluates to string value.

Example:
$$ListFind:TestFuncVar:"Mobile"

It returns either TRUE if the key 'Mobile' is available in the list variable 'Test func Var' or FALSE
if the key is not available. .

2.4 Constructs introduced in functions for List Var
The FOR IN loop is supported to iterate the values in the list variable. The number of iteration
depends on the number items in the list variable.
Syntax

FOR IN : < Iterator Var Name>: <List Var Name>

 .

.

 .

END FOR

<Iterator Var Name> is the name of variable user for the iteration. This variable is created implic-
itly.
<List Var Name> is the name of list variable.

The function LastResult can be used to check whether the last excecuted action
was successful.

 If the last action that is executed is LIST ADD or LIST DELETE then the func-
tion returns TRUE if the action was successful and FALSE otherwise.

 If the last action that is executed is LIST FILL then the $$LastResult returns the
number of items inserted in the list variable.
 295

TDL Reference Manual
Example:
FOR IN : Cnt : Test Func Var

 LOG : $$String:$$ListValue:TestFuncVar:##Cnt

END FOR

All the values of the list variable 'Test Func Var' are logged in the file 'tdlfunc.txt'.

3. Dynamic Actions
A new capability has been introduced with respect to Action framework where it is possible to
specify the Action Keyword and Action parameters as expressions. This allows the programmer to
execute actions based on dynamic evaluation of parameters. The Action keyword can as well be
evaluated dynamically. Normally this would be useful for specifying condition based action specifi-
cation in menu, key / button etc.In case of functions, as the function inherently supports condition
based actions via IF ELSE etc, this would be useful when one required to write a generic function,
which takes a parameter and later passes that to an action (as its parameter) which does not
allow expressions and expects a constant.

This has been achieved with the introduction of a new keyword "Action" .The syntax for specifying
the same is as given below

Syntax

Action :<Action Keyword Expression>: <Action Parameter Expression>

Where,
<Action Keyword Expression> is an expression evaluating to an Action Keyword
<Action Parameter Expression> is an expression evaluating to Action Parameters

We can specify and initiate an Action from the following
Menu Item
Key Definition
In a User Defined Function

At present the capability is valid for
Global Actions like Display, Alter etc
Global Actions inside User Defined Functions

Example:
1. Dynamic Actions in Key/Button Definition

[Button: Test Button]

Key : F6

Action : Action : Display : @@MyFor
296

TDL Reference Manual

;; The Button Test Button initiates a dynamic Action which takes the parameter as a formula

[System : Formula]

MyFor : if ##SVCurrentCompany CONTAINS "ABC" Then "BalanceSheet" +

 else "TrialBalance"

2. Dynamic Actions in User Defined Functions

[Button: Test Button]

Key : F6

Action :Call:TestFunc:"Balance Sheet"

[Function: Test Func]

Parameter : Test Func : String

01 : Action : Display : ##TestFunc

;;The function Test Func executes a dynamic action which takes Action parameter as the parameter passed
to the function

4. New Functions
In this release two new functions are introduced - $$TgtObject ans $$ContextKeyword.

4.1 Function – $$TgtObject
In TDL normally all evaluation is done in the context of the Context object. With the introduction of
aggregate collection and user defined function, apart from the requestor object and source object,
now the target object context is also available.

The object which is being populated or altered is referred as the Target object. In simple collec-
tion, the source object and target object both are same. In case of the aggregate collection and
user defined functions, the target object is different.

There are scenarios where the expression needs to be evaluated in the context of Target object,
in such cases the $$TgtObject can be used.

Observe the usage of Action keyword twice in this. The first usage is the attribute
"Action" for key definition. The second is the keyword "Action" introduced specifi-
cally for executing Dynamic Actions.
 297

TDL Reference Manual
A New Context Evaluation function $$TgtObject evaluates the expres¬sion in the context of the
Target Object. Using the $$TgtObject values can be fetched from the target object without making
the target object as the context object.

Syntax

$$TargetObject:<String Expression>

Where,
<String Expression> the expression and will be evaluated in the context of Target Object

4.1.1 Usage of $$TgtObject in User Defined Functions
In user defined function, while setting the methods values of target object, the expression needs
to be evaluated in the context of target object itself. The $$TgtObject is used in this case.

Example:
The Ledgers ‘Party 1’ and ‘Party 2’ having some opening balance. The requirement is to add the
opening balance of both the party’s and set the resultant value as the opening balance of Party 2.

[Function: Sample Function]

Object : Ledger : "Party 1"

01 : NEW OBJECT : Ledger : "Party 2"

02 : SET VALUE : OpeningBalance : $OpeningBalance +

 $$TgtObject:$OpeningBalance

;; By prefixing $$TgtObject to opening balance the closing balance of Target Object i.e. Party 2 is retrieved.
03 : ACCEPT ALTER

Here ‘Party 1’ is the source object and ‘Party 2’ is the target object. The opening balance of ‘Party
2’ is accessed using the $$TgtObject:$OpeningBalance.

4.1.2 $$TGTObject in Collection
In simple collection, the source object and target object both are same. In case of the aggregate
collection and user defined functions, the target object is different.

The function $$TgtObject allows to access to the values from the target object itself while the col-
lection is being populated. It is required in aggregate collection where the source object is not the
same as target object.

The function $$TgtObject is useful when the values are to be populated in collection based on
the values that are computed earlier.In aggregate collection the function $$TgtObject can used in
the attributes Fetch, Compute and Aggr Compute of collection.
298

TDL Reference Manual

Example:
A report is to be designed for displaying the stock item, the date on which the maximum quantity
of an item is sold and the maximum amount is received.

The collection is defined as follows:
[Collection: Src Voucher]

Type : Vouchers: VoucherType

ChildOf : $$VchTypeSales

[Collection: Summ Voucher]

Source Collection: Src Voucher

Walk : Inventory Entries

By : ItemName: $StockItemName

Aggr Compute : MaxDate : SUM : IF $$IsEmpty:$$TgtObject:$ItemDet+

 OR $$TgtObject:$ItemDet < $Amount THEN $Date ELSE +

 $$TgtObject:$MaxDate

Aggr Compute : ItemDet: MAX: $Amount

While creating a collection ‘Summ Voucher”, $$TgtObject is used to get the date on which the
maximum sales amount is received for each stock item. $ItemMaxAmt gives the maximum
amount received for individual item. The conditions checks if the evaluated $ItemMaxAmt is
empty for the stockitem or it is less than the current amount of the stock item of the source object
then the current date is selected otherwise the value of $MaxDate is retained.

Following Table shows the evaluation of values with respect to target object:

Source Object Current Objects Target Objects
3 Sales Voucher 8 Inventory Entries 3
Sales Voucher -1 Dated - 7/7/09 Item 1 - Rs.500

Item 2 - Rs.500
Item 3 - Rs.500

Item 1 - 7/7/09 - Rs 500
Item 2 - 9/7/09 - Rs 700
Item 3 - 8/7/09 - Rs 800

Sales Voucher -2 Dated - 8/7/09 Item 1 - Rs.400
Item 3 - Rs.800

Sales Voucher -3 Dated - 9/7/09 Item 1 - Rs.300
Item 2 - Rs.700
Item 3 - Rs.500
 299

TDL Reference Manual
4.2 Function – $$ContextKeyword
A New function $$ContextKeyword is used to get the title of the current Report or Menu. It is used
to search the context sensitive /online help based on the report or Menu title.
Syntax

$$ContextKeyword [:Yes/No]

The default value is No. If the value is specified as YES, then the title of the parent report is
returned. If no report is active then the parameter is ignored.

If the attribute Title is not specified in report definiton, then by default it returns the name of report
definition.

Example:
[Report : Context Keyword Function]

Form : Context Keyword Function

Title : "New Function Context Keyword"

 |

 |

[Field : Context Keyword Function]

Use : Name Field

Set As : $$ContextKeyword

The functions returns the Title of the current report i.e “New Function Context Keyword”.

If the parameter value yes is specified then the title of the report from where the report “Context
Keyword Function is called.

5. New Attribute – Trigger Ex
When a table is displayed from a field and a new value is to be added to the same table, the
attribute Trigger is used. It invokes a report. For example, adding new number in fields using
dynamic tables such as Tracking number, order No etc.

Syntax

Trigger : <Report Name> : <Trigger Condition>

Where,
<Report Name> name of report which is invoked if the <Trigger Condition> is true.The value
entered in the Ouput field of the <Report Name> is added to the table in the field.
300

TDL Reference Manual

Example:
[Field: FieldTrigger]

Use : Name Field

Table : New Number, Not Applicable

Show Table : Always

Trigger : New Number: $$IsSysNameEqual:NewNumber:$$EditData

CommonTable : No

Dynamic : ""

In the field "Field Trigger", a report "New Report" is called when the option New Number is
selected from the pop up table.

When the value has to be obtained from the complicated flow, a report name does not suffice. To
support this functionality a new attribute Trigger Ex is introduced.

The attribute Trigger Ex allows to add values to the dynamic table through an expession or user
defined functions.

Syntax

TriggerEx : <Value-expression> : <Trigger Condition>

Where,
<Value Expression> is an expression/function which evaluates to a String if the <Trigger Condi-
tion> is true. The string value thus obtained is added to the dynamic table.

Example:
[Field: FieldTriggerEx]

Use : Name Field

Table : Ledger, New Number, Not Applicable

Show Table : Always

TriggerEx : $$FieldTriggerEx: $$IsSysNameEqual:+

 NotApplicable:$$EditData

CommonTable : No

Dynamic : ""

In the field if the user selects any ledger from the table, the function $$FieldTriggerEx returns the
parent i.e Group name of the ledger selected and adds to the table “Ledger”.

[Function: FieldTriggerEx]

01: RETURN: $Parent:Ledger:$$EditData
 301

TDL Reference Manual
6. New Actions
Two new actions LogObject and LogTarget are introduced to log the object, its method and collec-
tion contents.

6.1 Log Object
The action Log Object is introduced as global action. It accepts filename as a parameter. In this
file the context object, its method and collection are logged.

Syntax

Log Object[:<path\filename>[:<Overwrite Flag>]]

Where,
<path/filename> is optional. It accepts the name of file along with the path in which the log is
created. If no file name is specified the contents of object are logged in "TDLfunc.log" when
logging is disabled otherwise it logs in to the Calculator pane.
<Overwrite Flag> is used to specify whether the contents should be appended of overwritten.
The default is No, which appends the content in the file. If YES, then the file is overwritten.

Example:
 [Function: FuncLedExp]

 |

 Object : Ledger

 |

 10: Log Object : LedgerObj.txt

6.2 Log Target
The action Log Target is function specific action. It accepts filename as a parameter. In this file the
log of object, its method and collection is created for the target object.

Syntax

Log Targett[:<path\filename>[:<Overwrite Flag>]]

Press Backspace in the report to view the additions to the table Ledger.
302

TDL Reference Manual

Where,
<path/filename> is optional. It accepts the name of file along with the path in which the log is
created. If no file name is specified the contents of object are logged in "TDLfunc.log" when
logging is disabled otherwise it logs in to the Calculator pane.
<Overwrite Flag> is used to specify whether the contents should be appended of overwritten.
The default is No, which appends the content in the file. If YES, then the file is overwritten.

Example:
 [Function: FuncLedExp]

 |

05: Set Target

|

10: Log Target : LedgerObj.txt

7. Tally Command Line Parameters
While executing tally, now command line parameters can also be given. Tally now accepts
command line parameters as explained in the next section.

7.1.1 /NOINITDL
This parameter will start Tally.ERP without loading any TDL specified in the Tally.ini file.
Syntax

/NOINITDL

7.1.2 /TDL
This parameters will start Tally.ERP and the specified TDL file loaded and can be specified
multiple times. The path can be optional, if the TDL file is in the Tally folder.
Syntax

/TDL:<path\filename>

Where,
<path/filename> is the name of TDL file along with the path.

7.1.3 /NOINILOAD
This parameter will start Tally.ERP without loading any Company specified in the Tally.ini file.
Syntax

/NOINILOAD

7.1.4 /LOAD
This parameter starts Tally.ERP and the specified company is loaded and can be specified
multiple times.
 303

TDL Reference Manual
Syntax

/LOAD:<Company Number>

7.1.5 /VARIABLE
This parameter allows to specify inline system variables of specified data type and can be
specified multiple times.
Syntax

/VARIABLE:<Variable Name>:<Data Type>

Where,
<Variable Name> is the name of inline variable. It must be unique.
<Data Type> is any of the primary data type.

7.1.6 /SETVAR
This parameter allows to specify the value of system variable or inline variable.
Syntax

/SETVAR:<Variable Name>:<Value>

Where,
<Variable Name> is the name of system variable or inline variable.
<Value> has to be a is any of the primary data type.

7.1.7 /NOGUI
This parameter hides the GUI(Graphical User Interface) of Tally. It performs the specified ACTION
without showing the tally interface based on a non-GUI or GUI action. It starts tally without
showing the tally window, performs the action and exits tally for non GUI actions like executing a
batch of job. If the action is a GUI action which invokes a report, menu or a message box then the
Tally window will be shown until the user quits.

7.1.8 /ACTION
This parameter starts Tally application with the specified action and it quits Tally application when
the user exits.
Syntax

/ACTION:<Action Name>[:<Action Parameter>]

Where,
<Action Name> is the name of any of the Global actions.
<Action Parameter> is optional.It has to be specified based on the action.

7.1.9 /PREACTION
This parameter starts Tally, loads the company and executes the specified action before display-
ing the Main Menu of Tally.
Syntax

/PREACTION:<Action Name>[:<Action Parameter>]
304

TDL Reference Manual

Where,
<Action Name> is the name of any of the Global actions.
<Action Parameter> is optional. It has to be specified based on the action.

7.1.10 /POSTACTION
This parameter starts Tally, loads the company and executes the specified action when the user
quits Tally.
Syntax

/POSTACTION:<Action Name>[:<Action Parameter>]

Where,
<Action Name> is the name of any of the Global actions.
<Action Parameter> is optional. It has to be specified based on the action.

Example:
Considering that "C:\Tally.ERP 9" is the Folder where the Tally.exe is available. The correspond-
ing TDL file "BackUP.txt" for functions is available in the sample folder.

7.1.11 /NOINITDL & /TDL
"C:\Tally.ERP 9\Tally.exe" /NOINITDL "/TDL:C: \Tally.ERP 9 \TDL \Securit-
yTDL.txt" /TDL:MasterTDL.txt

The above command ignores all the TDLs specified in Tally.ini file while loading Tally. It starts Tally
application and loads the TDLs SecurityTDL.txt and MasterTDL.txt.

7.1.12 /NOINILOAD with /LOAD
"C:\Tally.ERP 9 \Tally.exe" /NOINILOAD /LOAD:00009

The above command ignores all the companies specified in Tally.ini file while loading Tally. It
starts Tally application and loads the company identified by 00009.

7.1.13 /VARIABLE
"C:\Tally.ERP 9 \Tally.exe" /VARIABLE:MyLogicalVar:Logical

The above command starts Tally application and with a logical variable MyLogicalVar.

 Only one of the action parameters can be specified at a time.

 The actions specified with /PREACTION and /POSTACTION are not executed
for each time the Tally application is restarted due to the change in configura-
tion settings. The action specified with /PREACTION is executed when Tally
starts for the First time. The action specified with /POSTACTION is executed
during the Last exit from Tally application..
 305

TDL Reference Manual
7.1.14 /SETVAR and /ACTION
"C:\Tally.ERP9 \Tally.exe" /SETVAR:ExplodeFlag:Yes /LOAD:00009/ACTION:DIS-
PLAY:TrialBalance

The above command set the value of variable ExplodeFlag to YES and directly displays Trial
Balance report.

7.1.15 /PREACTION
"C:\Tally.ERP 9 \Tally.exe" /LOAD:00009 /PREACTION:CALL:BackupBeforeEntry

The above command starts Tally application, loads the company00009 and calls the function The
above command starts Tally application and loads the Entry before displaying the main menu.

7.1.16 /POSTACTION
"C:\Tally.ERP 9 \Tally.exe" /LOAD:00009 /POSTACTION:CALL:BackupOnExit

The above command starts Tally application and loads the company 00009 and calls the function
BackupOnExit when the user quits tally.

7.1.17 /NOGUI
"C:\Tally.ERP 9 \Tally.exe" /NOGUI /ACTION:CALL:BackupSchedule

The above command starts Tally application, executes the function BackupSchedule without dis-
playing the tally window.

8. Enhancements in Previous Release
8.1 Behavioral change in System Definitions
System Definitions overriding without '#' are treated as warnings now instead of errors. #, ! or *
modifications to [System : MenuKeys], [System :Form Keys], [System :Formula] and [System
:UDF] were shown as errors. They are now converted to warnings.
In Tally.ERP 9, overriding System Formula / Variable without prefixing a # have been treated as
an Error.The usage of #, * and ! prefix to System Definitions like Menu Keys, Form Keys and UDF
were not allowed and treated as errors.
Many existing Codes have stopped working due to this behavioral change. Hence in order to
maintain backward compatibility, these have been enabled & treated as warnings and in some
cases ignored so that all existing TDL Codes will still continue to work without any changes
required for the same.
These warnings are thrown only by the compiler during the compilation using Tally Developer.9

However, it is recommended to use # for existing System Formula alteration and refrain from
using # for System Menu Keys, Form Keys and UDF Definition or using ! for any system descrip-
tions.
306

TDL Reference Manual

8.2 Action Browse URL is Enhanced
The action Browse URL now accepts parameters. A list of parameters separated by space can
be specified, if the application accepts command line parameters. Exec Command is an alias for
action Browse URL.

Syntax

Action : Browse URL : <URL Formula> [: <command line parms>]

Where,
<URL formula> is an expression which evaluates to any link to a web site
<command line parms> List of command line parameters separated by space

Browse URL Key Action can be used to open web browser with any URL Formula.

Example:
[Button : Open Notepad]

Title : $$LocaleString:"Notepad"

Key : ALT + N

Action : Exec Command : Notepad : “Browse URL.Txt” “Test.txt”

[Form : Hyperlink]

Parts : Hyperlink

Button : Open Notepad

8.3 Collection Enhancements
8.3.1 The attribute Data Source now supports “HTTP XML”
While creating a HTTP Collection, the encoding format can be specified in the Data Source
attribute.
Data Source attribute now supports "HTTP XML" as file type in addition to "File XML".

Syntax

 DataSource : <Type> : <file path> : <Encoding>

Where,
<Type> specifies the type of data source. File Xml or HTTP XML
<File Path> data source file path
<Encoding> ASCII or UNICODE. This is Optional .The default value is UNICODE.

Example:
[Collection : My XML Coll]

DataSource : HTTP Xml : “http:\\localhost\MyFile.xml”: ASCII
 307

TDL Reference Manual
8.4 New Function – $$DateRange
A new Built-in function $$DateRange is introduced to convert data types of the value from one
form to due date format. Prior to this only through Field’s format specification conversion was
possible. Now the new function can be used inside User Defined Functions also.

Syntax

$$DateRange:<Due Date Expression>:<Base Date Expression>:<Flag>

Where ,
<Base Date Expression> is a String Expression and evaluates to DueDate
<Due Date Expression> is a String Expression and evaluates to Date
<Flag> is a logical expression decides whether to include date given in second parameter.

Example:
In the below code snippet the method ‘Order Due date’ will have value as "10 Days" from $Date
and the $Date is also inclusive.

 SET VALUE : OrderDueDate : $$DateRange:"10 Days":$Date:True

8.5 Action – SET VALUE
The action SET VALUE behaviour is enhanced wherein the value expression is now Optional.

Prior to Release 1.3, action SET VALUE required two parameters viz. the method name of Target
object and Source Object. Now if the source method name is same as in Target Object, then the
Source Object method name is optional.

Example:
Prior to Tally.ERP9 Release 1.3

01: SET VALUE : Ledger Name : $LedgerName

Tally.ERP9 Release 1.3 Onwards,
01: SET VALUE : Ledger Name

8.6 TDL Issues Resolved
This issue has been resolved.

User defined methods in TDL can get cached and cause refresh issue during editing of
objects.

This issue has been resolved.
SVUserName variable was loosing its value after company Login.

This issue has been resolved.
308

TDL Reference Manual

Modify Object failing to access variables from function when function is called from On:
Form Accept event.

This issue has been resolved.
 309

	Tally Definition Language - An Introduction
	1. Tally Definition Language
	1.1 Comparison with other Languages

	2. The TDL Program - At a Glance
	3. TDL Capabilities
	4. TDL - Features

	TDL Components
	1. Writing a Basic TDL Program
	1.1 Specification of TDL Files

	2. TDL Interfaces
	3. Hello TDL Program
	3.1 Executing Multiple Files using Include Definition

	4. TDL Components
	4.1 Definitions
	4.1.1 Types of Definition
	4.1.2 Integration Definitions
	4.1.3 Action Definitions
	4.1.4 System Definitions

	4.2 Attributes
	4.2.1 Classification of Attributes

	4.3 Modifiers
	4.3.1 Static/Load time Modifiers
	4.3.2 Dynamic/Real time modifiers
	4.3.3 Sequence of Evaluation - Attributes
	4.3.4 Delayed Attributes

	4.4 Actions in TDL
	4.5 Data Types
	4.6 Operators in TDL
	4.6.1 Arithmetic Operators
	4.6.2 Logical Operators
	4.6.3 Comparison Operators
	4.6.4 String Operators

	4.7 Special Symbols
	4.8 Functions

	Symbols and Prefixes
	1. Access Specifiers/Symbol Prefixes
	2. General Symbols
	3. The Usage of @ and @@
	3.1 Formula
	3.1.1 Naming Conventions for Formula
	3.1.2 Classifications of formulae
	3.1.3 Local Formula
	3.1.4 Global Formula

	4. The Usage of # and ##
	4.1 Referencing a Field using #
	4.2 Modifying existing Definitions using #
	4.3 Accessing value from a Variable using ##

	5. The Usage of $ and $$
	5.1 Accessing a Method using $
	5.2 Calling an Internal Function using $$

	6. Commenting a Code using ;, ;; and /**/
	7. Line Continuation Character (+)
	8. Exposing Methods and Creating Procedures (_)
	9. Reinitialize Definitions (*)
	10. Optional Definitions (!)

	Dimensions and Formatting
	1. Unit of Measurement
	2. Dimensional Attributes
	2.1 Sizing/Size Attributes
	2.1.1 Height and Width
	2.1.2 Height and Width - Form Definition
	2.1.3 Height and Width - Part Definition
	2.1.4 Height - Line Definition
	2.1.5 Width - Field Definition
	2.1.6 FullHeight and FullWidth
	2.1.7 FullHeight and FullWidth - Form Definition
	2.1.8 FullHeight - Line Definition
	2.1.9 FullWidth - Field Definition

	2.2 Spacing/Position Attributes
	2.2.1 Space Top, Space Bottom, Space Left and Space Right
	2.2.2 Space Top, Space Bottom, Space Left and Space Right - Form / Part Definition
	2.2.3 Space Top and Space Bottom - Line Definition
	2.2.4 Space Left and Space Right - Field Definition
	2.2.5 Indent
	2.2.6 Indent - Line Definition
	2.2.7 Indent - Field Definition

	3. Alignment Attributes
	3.1 Top Parts, Bottom Parts, Left Parts and Right Parts
	3.1.1 Top Parts and Bottom Parts - Form Definition
	3.1.2 Top Parts, Bottom Parts, Left Parts and Right Parts - Part Definition

	3.2 Top Lines and Bottom Lines
	3.2.1 Top Lines and Bottom Lines - Part Definition

	3.3 Left Field and Right Field
	3.3.1 Left Fields and Right Fields - Line Definition
	3.3.2 Left Fields / Fields - Field Definition

	3.4 Align
	3.4.1 Horizontal Align and Vertical Align

	4. Some Specific Attributes
	4.1 Inactive
	4.2 Invisible
	4.2.1 Invisible - Field Definition

	4.3 Widespaced

	5. Definitions and Attributes for Formatting
	5.1 Border
	5.2 Style
	5.3 Color
	5.4 Background and Print BG Attribute
	5.5 Format Attribute

	Variables, Buttons and Keys
	1. Attributes of a Variable
	1.1 Type
	1.2 Default
	1.3 Persistent
	1.4 Volatile
	1.5 Repeat

	2. The Scope of a Variable
	2.1 Local
	2.2 Global
	2.3 Field Acting as a Variable

	3. Modifying the Variable Value
	4. Example - Variables
	5. Buttons and Keys
	5.1 Attributes of Buttons/ Keys
	5.1.1 Title
	5.1.2 Key/ Keys
	5.1.3 Action
	5.1.4 Inactive

	Objects and Collections
	1. Objects
	1.1 Tally Object Structure
	1.2 Tally Objects Types
	1.2.1 Interface Objects
	1.2.2 Data Objects

	1.3 Object Context
	1.3.1 Example of Internal and TDL Object

	2. Collections
	2.1 Simple and Compound Collections
	2.2 Sources of Collection
	2.3 Creating a Collection
	2.3.1 Collection of Internal Objects
	2.3.2 External Collection

	3. Object Association
	3.1 Report Level Object association
	3.2 Part Level Object Association
	3.2.1 Using the ‘Object’ attribute specification in the Part definition
	3.2.2 Using ‘Object Ex’ attribute specification in Part definition

	3.3 Line Level Object Association
	3.3.1 Attribute - Repeat

	3.4 Field Level Object Association

	4. Methods
	4.1 Internal Methods
	4.2 User Defined/External Methods
	4.3 Accessing Method
	4.3.1 Directly Accessing Data from Any Object

	5. Collection Capabilities
	5.1 Basic Capabilities
	5.1.1 Union
	5.1.2 Filtering
	5.1.3 Sorting
	5.1.4 Searching

	5.2 Advanced Capabilities
	5.2.1 Extraction and Chaining
	5.2.2 Grouping & Aggregation
	5.2.3 Usage as Tables
	5.2.4 Integration Capabilities using HTTP XML Collection
	5.2.5 Dynamic Object Support
	5.2.6 Collection Capabilities for Remoting

	Actions in TDL
	1. Categories of Action
	2. Action Association
	2.1 Action Association at Menu Definition
	2.2 Action Association at Button/Key Definition
	2.3 Action Association at Field Definition

	3. Components of Actions
	4. Global Actions
	4.1 Action - Menu
	4.2 Action - Create and Alter
	4.3 Action - Modify Object
	4.4 Action - Browse URL

	5. Actions - Create Collection, Display Collection and Alter Collection
	5.1 Action - Create Collection
	5.2 Action - Display Collection
	5.3 Action - Alter Collection
	5.4 Collection Attributes
	5.4.1 Trigger
	5.4.2 Report
	5.4.3 Variable

	6. Object Specific Actions
	6.1 Menu Actions - Menu Up, Menu Down, Menu Reject
	6.2 Form Actions - Form Accept, Form Reject, Form End
	6.3 Part Actions - Part Home, Part End, Part Pg Up
	6.4 Line Actions - Explode, Display Object, Alter Object
	6.5 Field Actions - Field Copy, Field Paste, Field Erase, Calculator

	User Defined Fields
	1. What is UDF?
	1.1 Creating a UDF
	1.2 To store the User Input in the UDF
	1.3 To retrieve the value of UDF from an Object

	2. Classification of UDF’s
	2.1 Simple UDF
	2.1.1 UDF to store a single value
	2.1.2 UDF to store multiple values
	2.1.3 Creating collection of Values Stored in UDF

	2.2 Aggregate UDF
	2.2.1 Creating an Aggregate UDF
	2.2.2 Using an Aggregate UDF
	2.2.3 Using Aggregate UDF in a Sub-Form

	Reports, Printing and Validation Controls
	1. Reports
	1.1 Tabular Reports
	1.1.1 Designing a Tabular Report
	1.1.2 Displaying the Exploded Part

	1.2 Hierarchical Report (Drill down Report)
	1.2.1 Designing Hierarchical Reports

	1.3 Column Based Reports
	1.3.1 Multi-Column Reports
	1.3.2 Designing a Multi Column Report

	1.4 Auto-Column Reports
	1.4.1 Designing an Auto Column Report

	1.5 Automatic Auto-Column Reports
	1.5.1 Designing an Automatic Auto Column Report

	1.6 Columnar Report

	2. Printing
	2.1 Printing Techniques
	2.1.1 Menu Action - Print/ Print Collection
	2.1.2 Button Action - Print Report

	2.2 Page Breaks
	2.2.1 Types of Page Breaks

	2.3 Frequently Used Attributes and Functions
	2.3.1 Attributes
	2.3.2 Functions

	2.4 Validation and Controls
	2.4.1 Field Level Attribute - Validate
	2.4.2 Field Level Attribute - Unique
	2.4.3 Field Level Attribute - Notify
	2.4.4 Field Level Attribute - Control
	2.4.5 Form Level Attribute - Control
	2.4.6 Menu Level Attribute - Control
	2.4.7 Report Level Attribute - Family

	Voucher and Invoice Customisation
	1. Classification of Vouchers
	1.1 Accounting Vouchers
	1.2 Inventory Vouchers
	1.3 Accounting-cum-Inventory Vouchers

	2. The Structure of a Voucher Object
	3. Customisation
	3.1 Voucher Customisation
	3.2 Invoice Customisation
	3.2.1 Invoice Customization - User Defined Format
	3.2.2 Invoice Customization - Modifications to default format

	General and Collection Enhancements
	1. Attributes and Modifier Enhancements
	1.1 New Attributes
	1.1.1 Field Attribute - Set By Condition
	1.1.2 Field Attribute - ToolTip
	1.1.3 Report Attribute - Full Screen
	1.1.4 Part Attribute - Retain Focus
	1.1.5 Part Attribute - Default Line
	1.1.6 Collection Attribute - Sub Title

	1.2 Behavioral Changes of Attributes
	1.2.1 Set as / Info Attributes
	1.2.2 The attribute Format
	1.2.3 The attribute Sync

	1.3 The Attribute - Child Of to support Voucher Type
	1.4 Attribute Modifiers
	1.4.1 A New Attribute Modifier - Switch

	1.5 Behavioral Changes for Attribute Modifiers
	1.5.1 Changed precedence of “Use”
	1.5.2 Changed behaviour of Delayed Attribute Modifiers “Add/Delete/Replace”
	1.5.3 Enhanced Syntax of Delayed Attribute “Local”

	1.6 Partial Attribute Support
	1.6.1 Change in usage of 'BLANK' Keyword in Menu Items

	2. Enhanced Special Symbols
	2.1 Multi - line commenting in TDL source code using /* and */
	2.2 Extension of modifying definitions using #
	2.3 ‘*’ (Reinitialize) Definition modifier

	3. Method Formula Syntax with Relative Object Specification
	4. Enhancements - Object Association
	4.1 Report Level Object Association
	4.2 Part Level Object Association
	4.2.1 Using ‘Object’ attribute specification in Part definition.
	4.2.2 Using ‘Object Ex’ attribute specification in Part definition

	4.3 Line Level Object Association
	4.3.1 Repeat Syntax: Prior to Tally.ERP 9
	4.3.2 In Tally.ERP 9 - Repeat Syntax

	4.4 Field Level Object Association

	5. Enhancements - Object Access via Interface Object
	5.1 Identifying Part and Line Interface object with ‘Access Name’
	5.2 Value Extraction
	5.2.1 Value Extraction by function $$ObjectOf
	5.2.2 Value Extraction by using new method formula
	5.2.3 Repeat Syntax Using Access Name

	6. Bracket support in TDL
	6.1 During the Function Call
	6.2 In the language syntax for nesting formulas
	6.2.1 As a Mathematical Operator

	7. Action Enhancements
	7.1 Enhancements in Key Actions
	7.1.1 The attribute Scope
	7.1.2 The attribute Selectable

	7.2 New Actions
	7.2.1 Modify Object
	7.2.2 Action - Set Object Values
	7.2.3 Action - Backup Company
	7.2.4 Action - Restore Company
	7.2.5 Action - ChangeCrypt Company
	7.2.6 Action - Browse URL
	7.2.7 Action - HTTP Post
	7.2.8 Action - Refresh TDL

	8. Events introduced
	8.1 Event - On Form Accept
	8.2 Event - On Focus

	9. User Defined Function
	10. New Functions
	10.1 $$IsObjectBelongsTo
	10.2 $$NumLinesInScope

	11. Enhanced Collection Capabilities
	11.1 Aggregation and Reporting
	11.1.1 Source Collection
	11.1.2 Walk
	11.1.3 By
	11.1.4 Aggr Compute
	11.1.5 Compute
	11.1.6 Fetch
	11.1.7 Keep Source
	11.1.8 Search Key
	11.1.9 Data Source
	11.1.10 Data Roll up/summarization capability in TDL Collection
	11.1.11 Collection re-use, extraction and chaining support in TDL Collection
	11.1.12 Indexed or Searchable Collection on TDL defined keys

	11.2 The Summary Collection is available through Tally ODBC Interface
	11.3 HTTP XML Collection (GET and POST with and without Object Specification)
	11.3.1 HTTP - XML Collection
	11.3.2 Prerequisites for data transfer over HTTP
	11.3.3 Simple GET Request
	11.3.4 Simple GET Request and mapping the response to TDL Object
	11.3.5 A Simple POST
	11.3.6 Post Request with Pre-request Report
	11.3.7 Action - HTTP POST

	11.4 Usage As Tables
	11.4.1 Voucher Collection As Table
	11.4.2 Collection with Aggregation As Table
	11.4.3 ODBC Collection As Table
	11.4.4 XML Collection As Table

	11.5 Dynamic Object support for HTTP-XML Information Interchange
	11.6 Collection Capabilities for Remoting

	Remote Compliant TDL Reports
	1. Client/Server Architecture - An Overview
	2. Tally Client/Server Architecture using Tally.NET
	2.1 Tally.NET Server
	2.1.1 Tally.NET Features

	2.2 Tally.ERP 9 Server
	2.3 Tally.ERP 9 Client

	3. Setting up Server Tally for Remote Access
	4. Setting up the Client Tally
	5. TDL - In a Client/Server Environment
	6. TDL Enhancements for Remote
	6.1 Collection Enhancements
	6.2 Report Level Enhancements
	6.2.1 Fetching the Object
	6.2.2 Pre Fetching the Object
	6.2.3 Pre fetching the Collection

	6.3 Function on Request
	6.3.1 Evaluated at client side
	6.3.2 Evaluated at server side
	6.3.3 Hybrid

	6.4 Action Enhancements

	7. Writing Remote Compliant TDL Reports
	7.1 Fetching the single Object
	7.2 Repeating Lines over a Collection
	7.2.1 Fetching the Methods
	7.2.2 Function inside the Repeat
	7.2.3 Repeating over Period Collection

	7.3 Using the same Collection in more than one Report
	7.3.1 Fetching the required methods locally at Report
	7.3.2 Seperate Collections for fetching different methods

	User Defined Functions
	1. Functions - In General
	2. Functions - In TDL
	3. Function - Building Blocks
	3.1 Definition Block
	3.1.1 Parameter specification
	3.1.2 Variable declaration
	3.1.3 Static Variable declartion
	3.1.4 Return value specification
	3.1.5 Object specification

	3.2 Procedural Block

	4. Programming Constructs-In Function
	4.1 Conditional Constructs
	4.1.1 IF-ENDIF
	4.1.2 DO-IF
	4.1.3 IF-ELSE-ENDIF

	4.2 Looping Constructs
	4.2.1 WHILE - ENDWHILE
	4.2.2 WALK COLLECTION - END WALK

	4.3 Control Constructs
	4.3.1 BREAK
	4.3.2 CONTINUE
	4.3.3 START BLOCK - END BLOCK
	4.3.4 RETURN

	5. Calling a Function
	5.1 Using Action - CALL
	5.2 Using - Symbol Prefix $$

	6. Function Execution - Object Context
	6.1 Target Object Context
	6.2 Parameter Evaluation Context
	6.3 Return Value Evaluation

	7. Valid Statements inside a Function
	7.1 Actions for Variable Manipulation
	7.1.1 SET
	7.1.2 EXCHANGE
	7.1.3 INCREMENT
	7.1.4 DECREMENT

	7.2 Action Enhancements and New Actions
	7.2.1 Global Actions- Alter / Execute / Create
	7.2.2 Global Actions - MENU, DISPLAY
	7.2.3 MSG BOX
	7.2.4 QUERY BOX
	7.2.5 Progress Bar Actions
	7.2.6 START PROGRESS
	7.2.7 SHOW PROGRESS
	7.2.8 END PROGRESS
	7.2.9 LOG
	7.2.10 SET LOG ON
	7.2.11 SET LOG OFF
	7.2.12 SET FILE LOG ON
	7.2.13 SET FILE LOG OFF

	7.3 Actions - For Object and Context Manipulation
	7.3.1 NEW OBJECT
	7.3.2 INSERT COLLECTION OBJECT
	7.3.3 SET VALUE
	7.3.4 RESET VALUE
	7.3.5 CREATE TARGET / ACCEPT CREATE
	7.3.6 SAVE TARGET / ACCEPT
	7.3.7 ALTER TARGET / ACCEPT ALTER
	7.3.8 SET OBJECT
	7.3.9 SET TARGET
	7.3.10 Usage of Object manipulation Actions:

	What’s new in Tally.ERP 9 Release 1.5
	1. Collection Enhancements
	1.1 Source Var
	1.2 Compute Var
	1.3 Filter Var
	1.4 Sequence of Evaluation of Collection Attributes
	1.5 Usage of the collection attributes Compute Var, Source Var, Filter Var
	1.5.1 Usage of Compute Var in Simple Collection
	1.5.2 Usage of Sou rce Var, Compute Var, Filter Var in Aggregate collection

	2. List Variables Introduced
	2.1 List Variable
	2.2 List Variable Manipulation
	2.2.1 Adding/Deleting values in a List Variable
	2.2.2 Populating List variable from a collection
	2.2.3 Accessing List variable values
	2.2.4 Sorting value in a List variable

	2.3 Functions Used with List Variables
	2.3.1 Function ListValue
	2.3.2 Function ListCount
	2.3.3 Function ListFind

	2.4 Constructs introduced in functions for List Var

	3. Dynamic Actions
	4. New Functions
	4.1 Function - $$TgtObject
	4.1.1 Usage of $$TgtObject in User Defined Functions
	4.1.2 $$TGTObject in Collection

	4.2 Function - $$ContextKeyword

	5. New Attribute - Trigger Ex
	6. New Actions
	6.1 Log Object
	6.2 Log Target

	7. Tally Command Line Parameters
	7.1.1 /NOINITDL
	7.1.2 /TDL
	7.1.3 /NOINILOAD
	7.1.4 /LOAD
	7.1.5 /VARIABLE
	7.1.6 /SETVAR
	7.1.7 /NOGUI
	7.1.8 /ACTION
	7.1.9 /PREACTION
	7.1.10 /POSTACTION
	7.1.11 /NOINITDL & /TDL
	7.1.12 /NOINILOAD with /LOAD
	7.1.13 /VARIABLE
	7.1.14 /SETVAR and /ACTION
	7.1.15 /PREACTION
	7.1.16 /POSTACTION
	7.1.17 /NOGUI

	8. Enhancements in Previous Release
	8.1 Behavioral change in System Definitions
	8.2 Action Browse URL is Enhanced
	8.3 Collection Enhancements
	8.3.1 The attribute Data Source now supports “HTTP XML”

	8.4 New Function - $$DateRange
	8.5 Action - SET VALUE
	8.6 TDL Issues Resolved

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

